2016-2017学年江苏省扬州市高二(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“∃x>0,”的否定为.2.根据如图所示的伪代码,最后输出的S的值为.3.如图,四边形ABCD是一个5×4的方格纸,向此四边形内抛撒一粒小豆子,则小豆子恰好落在阴影部分内的概率为.4.抛物线y2=4x上横坐标为3的点P到焦点F的距离为.5.将参加环保知识竞赛的学生成绩整理后画出的频率分布直方图如图所示,则图中a的值为.6.函数的图象在x=1处的切线方程为.7.若双曲线的一条渐近线方程为,则m=.8.“a=3”是“直线2x+ay+1=0和直线(a﹣1)x+3y﹣2=0平行”的条件.(填“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”)9.已知函数,若函数g(x)=f(x)﹣m有3个零点,则m的取值范围是.10.圆心在x轴上且与直线l:y=2x+1切于点P(0,1)的圆C的标准方程为.11.函数f(x)的定义域为R,且f(﹣3)=1,f'(x)>2,则不等式f(x)<2x+7的解集为.12.若直线与圆x2+y2=1没有公共点,则此直线倾斜角α的取值范围是.13.已知函数(a>0).若存在x0,使得f(x0)≥0成立,则a的最小值为.14.如图,椭圆的右焦点为F,过F的直线交椭圆于A,B两点,点C是点A关于原点O的对称点,若CF⊥AB且CF=AB,则椭圆的离心率为.二、解答题(本大题共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)15.(14分)已知命题p:∀x∈R,x2+1≥m;命题q:方程表示双曲线.(1)若命题p为真命题,求实数m的取值范围;(2)若命题“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.16.(14分)某学校为了解学生的学习、生活等情况,决定召开一次学生座谈会.此学校各年级人数情况如表:年级性别高一年级高二年级高三年级男520y400女x610600(1)若按年级用分层抽样的方法抽取n个人,其中高二年级22人,高三年级20人,再从这n个人中随机抽取出1人,此人为高三年级的概率为,求x、y的值.(2)若按性别用分层抽样的方法在高三年级抽取一个容量为5的样本,从这5人中任取2人,求至少有1人是男生的概率.17.(14分)在平面直角坐标系xOy中,椭圆的左焦点为F(﹣1,0),左顶点为A,上、下顶点分别为B,C.(1)若直线BF经过AC中点M,求椭圆E的标准方程;(2)若直线BF的斜率为1,BF与椭圆的另一交点为D,求点D到椭圆E右准线的距离.18.(16分)某公园内直线道路旁有一半径为10米的半圆形荒地(圆心O在道路上,AB为直径),现要在荒地的基础上改造出一处景观.在半圆上取一点C,道路上B点的右边取一点D,使OC垂直于CD,且OD的长不超过20米.在扇形区域AOC内种植花卉,三角形区域OCD内铺设草皮.已知种植花卉的费用每平方米为200元,铺设草皮的费用每平方米为100元.(1)设∠COD=x(单位:弧度),将总费用y表示为x的函数式,并指出x的取值范围;(2)当x为何值时,总费用最低?并求出最低费用.19.(16分)若圆C:x2+y2+Dx+Ey+F=0的半径为r,圆心C到直线l的距离为d,其中D2+E2=F2,且F>0.(1)求F的取值范围;(2)求d2﹣r2的值;(3)是否存在定圆M既与直线l相切又与圆C相离?若存在,请写出定圆M的方程,并给出证明;若不存在,请说明理由.20.(16分)已知函数f(x)=lnx﹣a(x﹣1),g(x)=ex,其中e为自然对数的底数.(1)当a=1时,求函数y=f(x)的单调区间;(2)求函数y=f(x)在区间[1,e]上的值域;(3)若a>0,过原点分别作曲线y=f(x)、y=g(x)的切线l1、l2,且两切线的斜率互为倒数,求证:.2016-2017学年江苏省扬州市高二(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“∃x>0,”的否定为∀x>0,.【考点】命题的否定.【分析】根据特称命题的否定是全称命题进行求解即可.【解答】解:命题是特称命题,则命题的否定是全称命题,即∀x>0,,故答案为:∀x>0,【点评】本题主要考查含有量词的命题的否定,比较基础.2.根据如图所示的伪代码,最后输出的S的值为15.【考点】伪代码.【分析】分析程序的运行过程可知:该程序的作用是累加并输出S=1+2+3+4+5的值.【解答】解:分析程序中各变量、各语句的作用,根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S=1+2+3+4+5的值;∵S=1+2+3+4+5=15,故输出的S值为15.故答案为:15.【点评】本题考查了伪代码的应用问题,根据已知分析出循环的变量初始、终止值及步长,是解题的关键.3.如图,四边形ABCD是一个5×4的方格纸,向此四边形内抛撒一粒小豆子,则小豆子恰好落在阴影部分内的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】基本事件总数n=5×4=20个小方格,小豆子恰好落在阴影部分内包含怕小方格的个数m=4,由此能求出小豆子恰好落在阴影部分内的概率.【解答】解:由四边形ABCD是一个5×4的方格纸,知基本事件总数n=5×4=20个小方格,小豆子恰好落在阴影部分内包含怕小方格的个数m=4,∴小豆子恰好落在阴影部分内的概率p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.4.抛物线y2=4x上横坐标为3的点P到焦点F的距离为4.【考点】抛物线的简单性质.【分析】直接利用抛物线的定义,求解即可.【解答】解:物线y2=4x上横坐标为3的点P到焦点F的距离为,就是这点到抛物线的准线的距离.抛物线的准线方程为:x=﹣1,所以抛物线y2=4x上横坐标为3的点P到焦点F的距离为=3﹣(﹣1)=4.故答案为:4【点评】本题考查抛物线的简单性质的应用,抛物线的定义的应用,考查计算能力.5.将参加环保知识竞赛的学生成绩整理后画出的频率分布直方图如图所示,则图中a的值为0.028.【考点】频率分布直方图.【分析】根据频率和为1列出方程,即可求出a的值.【解答】解:根据频率和为1,得(0.006+0.01+a+0.034+0.022)×10=1,解得a=0.028.故答案为:0.028.【点评】本题考查了频率分布直方图的应用问题,是基础题目.6.函数的图象在x=1处的切线方程为y=x+1.【考点】利用导数研究曲线上某点切线方程.【分析】求出f(x)的导数,计算f(1),f′(1)的值,从而求出切线方程即可.【解答】解:f′(x)=2x﹣,f(1)=2,f′(1)=1,故切线方程是:y﹣2=x﹣1,即:y=x+1,故答案为:y=x+1.【点评】本题考查了求切线方程问题,考查导数的应用,是一道基础题.7.若双曲线的一条渐近线方程为,则m=.【考点】双曲线的简单性质.【分析】双曲线的渐近线方程为y=±,结合条件即可得到所求m的值.【解答】解:双曲线的渐近线方程为y=±,由一条渐近线方程为,可得m=,故答案为:.【点评】本题考查双曲线的方程和性质,主要是渐近线方程的运用,考查运算能力,属于基础题.8.“a=3”是“直线2x+ay+1=0和直线(a﹣1)x+3y﹣2=0平行”的充分不必要条件.(填“充要”,“充分不必要”,“必要不充分”,“既不充分也不必要”)【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义结合直线的平行关系判断即可.【解答】解:a=3时,2x+3y+1=0和2x+3y﹣2=0平行,是充分条件,若直线2x+ay+1=0和直线(a﹣1)x+3y﹣2=0平行,则=≠﹣,解得:a=3或a=﹣2,不是必要条件,故答案为:充分不必要.【点评】本题考查了充分必要条件,考查直线的平行关系以及集合的包含关系,是一道基础题.9.已知函数,若函数g(x)=f(x)﹣m有3个零点,则m的取值范围是(﹣,0).【考点】函数零点的判定定理.【分析】由题意可得f(x)=m有3个不同实数根.画出函数f(x)的图象,通过图象即可得到所求m的范围.【解答】解:函数g(x)=f(x)﹣m有3个零点,即为f(x)=m有3个不同实数根.当x≥0时,f(x)=﹣2x≤0;当x<0时,f(x)=xex,导数f′(x)=(1+x)ex,当﹣1<x<0时,f′(x)>0,f(x)递增;当x<﹣1时,f′(x)<0,f(x)递减.可得f(x)在x<0时由最小值,且为﹣.画出f(x)的图象,可得当﹣<m<0,函数f(x)和直线y=m有3个交点,函数g(x)=f(x)﹣m有3个零点.故答案为:(﹣,0).【点评】不同考查函数零点个数问题的解法,注意运用转化思想,考查数形结合思想方法,属于中档题.10.圆心在x轴上且与直线l:y=2x+1切于点P(0,1)的圆C的标准方程为(x﹣2)2+y2=5.【考点】圆的标准方程.【分析】设出圆的标准方程,由已知条件结合直线垂直的性质和点在圆上求出圆心和半径,由此能求出圆的方程.【解答】解:设圆的标准方程为(x﹣a)2+(y﹣b)2=r2,∵圆心在x轴上,∴b=0,(1)∵与直线l:y=2x+1切于点P(0,1),∴=﹣,(2),由(1)、(2),得a=2,b=0,又∵P点在圆上,代入圆的方程得r2=5,∴所求圆的标准方程为(x﹣2)2+y2=5.故答案为(x﹣2)2+y2=5.【点评】本题考查圆的标准方程的求法,是中档题,解题时要认真审题,注意待定系数法的合理运用.11.函数f(x)的定义域为R,且f(﹣3)=1,f'(x)>2,则不等式f(x)<2x+7的解集为(﹣∞,﹣3).【考点】利用导数研究函数的单调性.【分析】设F(x)=f(x)﹣(2x+7),则F′(x)=f′(x)﹣2,由对任意x∈R总有f′(x)>2,知F′(x)=f′(x)﹣2>0,所以F(x)=f(x)﹣2x﹣7在R上是增函数,由此能够求出结果.【解答】解:设F(x)=f(x)﹣(2x+7)=f(x)﹣2x﹣7,则F′(x)=f′(x)﹣2,∵f′(x)>2,∴F′(x)=f′(x)﹣2>0,∴F(x)=f(x)﹣2x﹣7在R上递增,∵f(﹣3)=1,∴F(﹣3)=f(﹣3)﹣2×(﹣3)﹣7=0,∵f(x)<2x+7,∴F(x)=f(x)﹣2x﹣7<0,∴x<﹣3,故答案为:(﹣∞,﹣3).【点评】本题考查利用导数研究函数的单调性的应用,是中档题.解题时要认真审题,仔细解答,注意合理地进行等价转化.12.若直线与圆x2+y2=1没有公共点,则此直线倾斜角α的取值范围是[0,)∪(,π).【考点】直线与圆的位置关系.【分析】利用直线与圆x2+y2=1没有公共点,可得圆心到直线的距离大于半径,即可得出结论.【解答】解:∵直线与圆x2+y2=1没有公共点,∴>1,∴k∈(﹣1,1),∴α∈[0,)∪(,π).故答案为:[0,)∪(,π).【点评】本题主要考查了直线与圆的位置关系,考查直线斜率与倾斜角的关系,属于基础题13.已知函数(a>0).若存在x0,使得f(x0)≥0成立,则a的最小值为12.【考点】函数的最值及其几何意义.【分析】若存在x0,使得f(x0)≥0成立,则函数(a>0)的最大值大于等于0,进而求得答案.【解答】解:若存在x0,使得f(x0)≥0成立,则函数(a>0)的最大值大于等于0,当x=时,函数f(x)取最大值a﹣6,故a﹣6≥0,解得:a≥12,故答案为:12【点评】本题以命题的真假判断与应用为载体,考查了函数的最值,函数的极值,函数的零点,函数的奇偶性等知识点,难度中档.14.如图,椭圆的右焦点为F,过F的直线交椭圆于A,B两点,点C是点A关于原点O的对称点,若CF⊥AB且CF=AB,则椭圆的离心率为.【考点】椭圆的简单性质.【分析】作另一焦点F′,连接AF′和BF′和CF′,则四边形FA