万有引力定律应用典型题型(全)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

32万有引力定律应用的典型题型【题型1】天体的质量与密度的估算(1)测天体的质量及密度:(万有引力全部提供向心力)由rTmrMmG222得2324GTrM又334RM得3233RGTr【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为T=301s。问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。计算时星体可视为均匀球体。(引力常数G=6.671011m3/kg.s2)解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。设中子星的密度为,质量为M,半径为R,自转角速度为,位于赤道处的小物块质量为m,则有RmRGMm22T2334RM由以上各式得23GT,代入数据解得:314/1027.1mkg。点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分析求解是应用万有引力定律解题惯用的一种方法。变式训练:数据能够估算出地球的质量的是()A.月球绕地球运行的周期与月地之间的距离B.地球表面的重力加速度与地球的半径C.绕地球运行卫星的周期与线速度D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。设地球的质量为M,卫星的质量为m,卫星的运行周期为T,轨道半径为r根据万有引力定律:rT4mrMmG222……①得:33232GTr4M……②可见A正确而Tr2v……由②③知C正确对地球表面的卫星,轨道半径等于地球的半径,r=R……④由于3R4M3……⑤结合②④⑤得:G3T2可见D错误地球表面的物体,其重力近似等于地球对物体的引力由2RMmGmg得:GgRM2可见B正确【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。【题型2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12h,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24h。问:哪颗卫星的向心加速度大?哪颗卫星的线速度大?若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少?解析:本题主要考察普通卫星的运动特点及其规律由开普勒第三定律T2∝r3知:“风云二号”卫星的轨道半径较大又根据牛顿万有引力定律rvmmarMmG22得:2rMGa,可见“风云一号”卫星的向心加速度大,rGMv,可见“风云一号”卫星的线速度大,“风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h,即第二天上午8点钟。【探讨评价】由万有引力定律得:①由222rvmrMmG可得:rGMvr越大,v越小。②由rmrMmG22可得:3rGMr越大,ω越小。34③由rTmrMmG222可得:GMrT32r越大,T越大。④由向marMmG2可得:2rGMa向r越大,a向越小。任何卫星的环绕速度不大于7.9km/s,运动周期不小于85min。【题型3】同步卫星的运动下列关于地球同步卫星的说法中正确的是:A、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上B、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24hC、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上D、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。解析:本题考察地球同步卫星的特点及其规律。同步卫星运动的周期与地球自转周期相同,T=24h,角速度ω一定根据万有引力定律rT4mrmMG222得知通讯卫星的运行轨道是一定的,离开地面的高度也是一定的。地球对卫星的引力提供了卫星做圆周运动的向心力,因此同步卫星只能以地心为为圆心做圆周运动,它只能与赤道同平面且定点在赤道平面的正上方。故B正确,C错误。不同通讯卫星因轨道半径相同,速度大小相等,故无相对运动,不会相撞,A错误。由rvmmarMmG22知:通讯卫星运行的线速度、向心加速度大小一定。故正确答案是:B、D【探讨评价】通讯卫星即地球同步通讯卫星,它的特点是:与地球自转周期相同,角速度相同;与地球赤道同平面,在赤道的正上方,高度一定,绕地球做匀速圆周运动;线速度、向心加速度大小相同。三颗同步卫星就能覆盖地球。【题型4】“双星”问题天文学中把两颗距离比较近,又与其它星体距离比较远的星体叫做双星,双星的间距是一定的。设双星的质量分别是m1、m2,星球球心间距为L。问:⑴两星体各做什么运动?⑵两星的轨道半径各多大?⑶两星的速度各多大?解析:本题主要考察双星的特点及其运动规律⑴由于双星之间只存在相互作用的引力,质量不变,距离一定,则引力大小一定,根据牛顿第二定律知道,每个星体的加速度大小不变。因此它们只能做匀速圆周运动。⑵由牛顿定律222121221rmrmLmmG……①Om2m1r1r235得:1221mmrr又Lrr21……②解得:LmmmrLmmmr21122121……③⑶由①得:)mm(LGmLrGmrv21221211)mm(LGmLrGmrv21122122【探讨评价】双星的特点就是距离一定,它们间只存在相互作用的引力,引力又一定,从而加速度大小就是一个定值,这样的运动只能是匀速圆周运动。这个结论很重要。同时利用对称性,巧妙解题,找到结论的规律,搞清结论的和谐美与对称美对我们以后的学习也很有帮助。【题型5】“两星”问题如图是在同一平面不同轨道上运行的两颗人造地球卫星。设它们运行的周期分别是T1、T2,(T1<T2),且某时刻两卫星相距最近。问:⑴两卫星再次相距最近的时间是多少?⑵两卫星相距最远的时间是多少?解析:本题考察同一平面不同轨道上运行的两颗人造地球卫星的位置特点及其卫星的运动规律⑴依题意,T1<T2,周期大的轨道半径大,故外层轨道运动的卫星运行一周的时间长。设经过△t两星再次相距最近则它们运行的角度之差2……①2tT2tT2:21即……②解得:1221TTTTt⑵两卫星相距最远时,它们运行的角度之差12k……③1k2tT2tT2:21即……④k=0.1.2……解得:1221TTTT21k2t……⑤k=0.1.2……【探讨评价】曲线运动求解时间,常用公式φ=ωt;通过作图,搞清它们转动的角度关系,以及终边相同的角,是解决这类问题的关键。【题型6】同步卫星的发射问题(变轨问题)发射地球同步卫星时,先将卫星发射至近地圆形轨道1运行,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆形轨道3运行。设轨道1、2相切于Q点,轨道2、3相切于P点,则卫星分别在1、2、3轨道上正常运行时,地球地球PQv2v1v2/v12336⑴比较卫星经过轨道1、2上的Q点的加速度的大小;以及卫星经过轨道2、3上的P点的加速度的大小⑵设卫星在轨道1、3上的速度大小为v1、v3,在椭圆轨道上Q、P点的速度大小分别是v2、v2/,比较四个速度的大小解析:同步卫星的发射有两种方法,本题提供了同步卫星的一种发射方法,并考察了卫星在不同轨道上运动的特点。⑴根据牛顿第二定律,卫星的加速度是由于地球吸引卫星的引力产生的。即:marMmG2可见卫星在轨道2、3上经过P点的加速度大小相等;卫星在轨道1、2上经过Q点的加速度大小也相等;但P点的加速度小于Q点的加速度。⑵1、3轨道为卫星运行的圆轨道,卫星只受地球引力做匀速圆周运动由rvmrMmG22得:rGMv可见:v1>v3由开普勒第二定律知,卫星在椭圆轨道上的运动速度大小不同,近地点Q速度大,远地点速度小,即:v2>v2/卫星由近地轨道向椭圆轨道运动以及由椭圆轨道向同步轨道运动的过程中,引力小于向心力,rvmrMmG22,卫星做离心运动,因此随着轨道半径r增大,卫星运动速度增大,它做加速运动,可见:v2>v1,v3>v2/因此:v2>v1>v3>v2/【探讨评价】卫星运动的加速度是由地球对卫星的引力提供的,所以研究加速度首先应考虑牛顿第二定律;卫星向外轨道运行时,做离心运动,半径增大,速度必须增大,只能做加速运动。同步卫星是怎样发射的呢?通过上面的例题及教材学习,我们知道:同步卫星的发射有两种方法,一是直接发射到同步轨道;二是先发射到近地轨道,然后再加速进入椭圆轨道,再加速进入地球的同步轨道。【题型7】“连续群”与“卫星群”土星的外层有一个环,为了判断它是土星的一部分,即土星的“连续群”,还是土星的“卫星群”,可以通过测量环中各层的线速度v与该层到土星中心的距离R之间的关系来判断:A、若v∝R,则该层是土星的连续群B、若v2∝R,则该层是土星的卫星群C、若R1v,则该层是土星的连续群D、若R1v2,则该层是土星的卫星群解析:本题考察连续物与分离物的特点与规律⑴该环若是土星的连续群,则它与土星有共同的自转角速度,Rv,因此v∝R37⑵该环若是土星的卫星群,由万有引力定律RvmRMmG22得:R1v2故A、D正确【探讨评价】土星也在自转,能分清环是土星上的连带物,还是土星的卫星,搞清运用的物理规律,是解题的关键。同时也要注意,卫星不一定都是同步卫星。【题型8】宇宙空间站上的“完全失重”问题假定宇宙空间站绕地球做匀速圆周运动,则在空间站上,下列实验不能做成的是:A、天平称物体的质量B、用弹簧秤测物体的重量C、用测力计测力D、用水银气压计测飞船上密闭仓内的气体压强E、用单摆测定重力加速度F、用打点计时器验证机械能守恒定律解析:本题考察了宇宙空间站上的“完全失重”现象。宇宙飞船绕地球做匀速圆周运动时,地球对飞船的引力提供了向心加速marMmG2,可见2rMGa……①对于飞船上的物体,设F为“视重”,根据牛顿第二定律得:amFrMmG/2/……②解得:F=0,这就是完全失重在完全失重状态下,引力方向上物体受的弹力等于零,物体的重力等于引力,因此只有C、F实验可以进行。其它的实验都不能进行。【探讨评价】当物体的加速度等于重力加速度时,引力方向上物体受的弹力等于零,但物体的重力并不等于零;在卫星上或宇宙空间站上人可以做机械运动,但不能测定物体的重力。【题型9】黑洞问题“黑洞”问题是爱因斯坦广义相对论中预言的一种特殊的天体。它的密度很大,对周围的物质(包括光子)有极强的吸引力。根据爱因斯坦理论,光子是有质量的,光子到达黑洞表面时,也将被吸入,最多恰能绕黑洞表面做圆周运动。根据天文观察,银河系中心可能有一个黑洞,距离可能黑洞为6.0×1012m远的星体正以2.0×106m/s的速度绕它旋转,据此估算该可能黑洞的最大半径是多少?(保留一位有效数字)解析:本题考察“黑洞”的基本知识,这是一道信息题。黑洞做为一种特殊的天体,一直受到人们广泛的关注,种种迹象表明,它确实存在于人的视野之外。黑洞之黑,就在于光子也逃不出它的引力约束。光子绕黑洞做匀速圆周运动时,它的轨道半径就是黑洞的最大可能半径。设光子的质量为m,黑洞的质量为M,黑洞的最大可能半径为R,光子的速度为c根据牛顿定律RcmRMmG22……①得:38对银河系中的星体,设它的质量为m/,它也在绕黑洞旋转,因此rvmrMmG22……②由①②解得:m103rcvR822【探讨评价】通过上面的数据分析我们知道,黑洞是一种特殊的天体,它的质量、半径都很大,因此它对周围星体的引力特别大,任何物质(包括光子)都将被它吸入,这就是“黑洞”命名的缘由。黑洞是否真正存在,其运动特点和规律到底怎么样,同学们可以上网查资料,充分考查研究。希望同学们将来成为真正的宇宙探秘科学家。我们要认真学习课本的阅读材料,能用中学物理知识分析解

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功