第1页(共32页)2018年江苏省连云港市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣8的相反数是()A.﹣8B.C.8D.﹣2.(3分)下列运算正确的是()A.x﹣2x=﹣xB.2x﹣y=﹣xyC.x2+x2=x4D.(x﹣l)2=x2﹣13.(3分)地球上陆地的面积约为150000000km2.把“150000000”用科学记数法表示为()A.1.5×108B.1.5×107C.1.5×109D.1.5×1064.(3分)一组数据2,1,2,5,3,2的众数是()A.1B.2C.3D.55.(3分)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.B.C.D.6.(3分)如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()第2页(共32页)A.B.C.D.7.(3分)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m8.(3分)如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5B.﹣4C.﹣3D.﹣2二、填空题(本大题共8小题,毎小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)使有意义的x的取值范围是.10.(3分)分解因式:16﹣x2=.11.(3分)如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为.第3页(共32页)12.(3分)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为.13.(3分)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为cm.14.(3分)如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=.15.(3分)如图,一次函数y=kx+b的图象与x轴、y轴分别相交于A、B两点,⊙O经过A,B两点,已知AB=2,则的值为.16.(3分)如图,E、F,G、H分别为矩形ABCD的边AB、BC、CD、DA的中点,连接AC、HE、EC,GA,GF.已知AG⊥GF,AC=,则AB的长为.三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2+20180﹣.18.(6分)解方程:﹣=0.第4页(共32页)19.(6分)解不等式组:20.(8分)随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费悄况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:(1)本次被调査的家庭有户,表中m=;(2)本次调查数据的中位数出现在组.扇形统计图中,D组所在扇形的圆心角是度;(3)这个社区有2500户家庭,请你估计家庭年文化教育消费10000元以上的家庭有多少户?组別家庭年文化教育消费金额x(元)户数Ax≤500036B5000<x≤10000mC10000<x≤1500027D15000<x≤2000015Ex>200003021.(10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是;(2)现甲队在前两周比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?22.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连第5页(共32页)接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.23.(10分)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.24.(10分)某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调査.获取信息如下:购买数量低于5000块购买数量不低于5000块红色地砖原价销售以八折销售蓝色地砖原价销售以九折销售如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖第6页(共32页)的一半,并且不超过6000块,如何购买付款最少?请说明理由.25.(10分)如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底间时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)26.(12分)如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标27.(14分)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC是边长为2的等边形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连第7页(共32页)接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.(4)如图2,当△ECD的面积S1=时,求AE的长.第8页(共32页)2018年江苏省连云港市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣8的相反数是()A.﹣8B.C.8D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)下列运算正确的是()A.x﹣2x=﹣xB.2x﹣y=﹣xyC.x2+x2=x4D.(x﹣l)2=x2﹣1【分析】根据整式的运算法则即可求出答案.【解答】解:(B)原式=2x﹣y,故B错误;(C)原式=2x2,故C错误;(D)原式=x2﹣2x+1,故D错误;故选:A.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.(3分)地球上陆地的面积约为150000000km2.把“150000000”用科学记数法表示为()A.1.5×108B.1.5×107C.1.5×109D.1.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点第9页(共32页)移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:150000000=1.5×108,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)一组数据2,1,2,5,3,2的众数是()A.1B.2C.3D.5【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故选:B.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.5.(3分)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共6个数,大于3的有3个,∴P(大于3)==;故选:D.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.第10页(共32页)6.(3分)如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.7.(3分)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m【分析】分别求出t=9、13、24、10时h的值可判断A、B、C三个选项,将解析式配方成顶点式可判断D选项.【解答】解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项第11页(共32页)正确;故选:D.【点评】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质.8.(3分)如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5B.﹣4C.﹣3D.﹣2【分析】根据题意可以求得点B的坐标,从而可以求得k的值.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=﹣x,∵OB=,∴点B的坐标为(,),∵点B在反比例函数y=的图象上,∴,解得,k=﹣3,第12页(共32页)故选:C.【点评】本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.二、填空题(本大题共8小题,毎小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)使有意义的x的取值范围是x≥2.【分析】当被开方数x﹣2为非负数时,二