4-1-3.巧求周长学生版page1of9基本概念①周长:封闭图形一周的长度就是这个图形的周长.②面积:物体的表面或封闭图形的大小,叫做它们的面积.基本公式:①长方形的周长2(长宽),面积长宽.②正方形的周长4边长,正方形的面积边长边长.常用方法:对于基本的长方形和正方形图形,可以直接用公式求出它们的周长和面积,对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法割补成基本图形,利用长方形、正方形周长及面积计算的公式求解.转化是一种重要的数学思想方法,在转化过程中要抓住“变”与“不变”两个部分.转化后的图形虽然形状变了,但其周长和面积不应该改变,所以在求解过程中不能遗漏掉某些线段的长度或某部分图形的面积.转化的目标是将复杂的图形转化为周长或面积可求的图形.寻求正确有效的解题思路,意味着寻找一条摆脱困境、绕过障碍的途径.因此,我们在解决数学问题时,思考的着重点就是要把所需解决的问题转化为已经能够解决的问题.也就是说,在直接求解不容易或很难找到解题途径的问题时,我们往往转化问题的形式,从侧面或反面寻找突破口,知道最终把它转化成一个或若干个能解决的问题.这种解决问题的思想在数学中叫“化归”,它是数学思维中重要的思想和方法.在几何中,有许多图形是由一些基本图形组合、拼凑而成的.这样的图形我们称为不规则图形.不规则图形的面积往往无法直接应用公式计算.那么,不规则图形的面积怎样去计算呢?对称、旋转、平移这几种几何变换就是解决这类面积问题的手段.平移:在平面图形的计算中,常常要将一个平面图形移动到平面上的另一个位置进行计算.其中,将图形沿一个固定方向的移动叫做平移,一个图形经过平行移动不改变其形状与大小,所以图形面积是保持不变的.利用图形的平移,可以使面积计算问题的解法简捷明快,颇有新意.割补:割补法在我国古代叫“出入相补原理”,我国古代魏晋时期著名的数学家刘徽在《九章算术注》中就明原有图形结构例题精讲巧求周长对称旋转平移新的图形结构在原有图形结构中解决问题较困难在新的图形结构中解决问题较容易4-1-3.巧求周长学生版page2of9确地提出“出入相补,各从其类”的出入相补原理.这个原理的内容是几何图形经过分、合、移、补所拼凑成的新图形,它的面积不变.旋转:在平面图形的割补中,有时要将一个图形绕定点旋转到一个新的位置,产生一种新的图形结构,图形在转动过程中形状大小不发生改变.利用这种新的图形结构可以帮我们解决面积的计算问题.对称:平面图形中有许多简单漂亮的图形都是轴对称图形.轴对称图形沿对称轴折叠,轴两侧可以完全重合.也就是说,如果一个图形是轴对称图形,那么对称轴平分这个图形的面积.熟悉轴对称图形这个性质,对面积计算会有很大帮助.代换:在几何计算中,对有关数量进行适当的等量代换也是解决问题的已知技巧.本讲主要通过求一些不规则图形的周长,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求周长的技巧,提高学生的观察能力、动手操作能力、综合运用能力.【例1】求图中所有线段的总长(单位:厘米)2134EDCBA【例2】如图所示,一个大长方形被三条线段分成了四个小长方形,各条线段长度见图(单位:厘米).求:图中所有长方形的周长之和.21342【例3】如图,正方形的边长为4,被分割成如下12个小长方形,求这12个小长方形的所有周长之和.【巩固】(“希望杯”第一试)如右图,正方形ABCD的边长是6厘米,过正方形内的任意两点画直线,可把正方形分成9个小长方形。这9个小长方形的周长之和是多少厘米?ABCD4-1-3.巧求周长学生版page3of9【例4】下图表示一块地,四周都用篱笆围起来,转弯处都是直角.已知西边篱笆长17米,南边篱笆长23米.四周篱笆长多少米?北南西东1723【巩固】(希望杯培训题)右图的周长是分米.6分米7分米【巩固】计算右边图形的周长(单位:厘米)。1510【巩固】下图是一个锯齿状的零件,每一个锯齿的两条线段都长2厘米,求这个零件的周长.【例5】下图中标出的数表示每边长,单位是厘米.它的周长是多少厘米?4-1-3.巧求周长学生版page4of9【巩固】右图是由七个长5厘米、宽3厘米的相同长方形经过竖放、横放而成的图形.求这个图形的周长?【例6】一个周长是20厘米的正方形,剪下一个周长是6厘米的正方形,剩下的图形的周长是.(写出所有可能的结果)【例7】求下图的周长.【巩固】求右图的周长.【巩固】下图的小正方形边长为1厘米.这个图形的外沿的周长是多少厘米?【例8】如下图是某校的平面图,已知线段a=120米,b=130米,c=70米,d=60米,l=250米.杨老师4-1-3.巧求周长学生版page5of9每天早晨绕学校跑3圈,问每天跑多少米?【例9】(第七届”小机灵杯”数学竞赛初赛)下面两张图中,周长较大的是.(在横线上填写表示图名的字母)第8题141410BA【巩固】如下图,正方形操场边长100米,一只蚂蚁沿甲地走了一圈,另一只蚂蚁沿乙地走了一圈,谁走的路长?它们各走了多少米?【巩固】求右图所示图形的周长(单位:分米)501050【例10】如图是一个机器零件的侧面图,图中每一条最短线段长5厘米,这个零件高30厘米,求这个零件侧面的周长是多少厘米?4-1-3.巧求周长学生版page6of9【例11】下图是一面砖墙的平面图,每块砖长20厘米,高8厘米,像图中那样一层、二层…一共摆十层,求摆好后这十层砖墙的周长是多少?【巩固】把长2厘米、宽1厘米的长方形砖块摆成如图的形状,求该图形的周长?【例12】右图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是多少厘米?【巩固】图中是由周长都是20厘米的小正方形组成的,它的周长是多少厘米?【巩固】下图是由边长为1厘米的11个正方形堆成的“土”字图形.试求出其周长.【巩固】如图,每个小方格是一个正方形,如果该图总面积是52个平方单位,试求这个图形的外沿周长是多少个长度单位?4-1-3.巧求周长学生版page7of9【例13】图⑴、图⑵都是由完全相同的正方形拼成的,并且图⑴的周长是22厘米,那么图⑵的周长是多少厘米?(2)(1)【例14】边长是15厘米的3个正方形拼成一个长方形,这个长方形的周长是多少?【巩固】用一块长8分米,宽4分米的长方形纸板与两块边长4分米的正方形纸板拼成一个正方形.拼成的正方形的周长是多少分米?48【例15】两个大小相同的正方形拼成了一个长方形,长方形的周长比原来的两个正方形周长的和减少了6厘米,原来一个正方形的周长是多少厘米?【例16】(2007年”希望杯”第一试)右图中的阴影部分BCGF是正方形,线段FH长18厘米,线段AC长24厘米,则长方形ADHE的周长是厘米.HGFEDACB【巩固】如图,在长方形ABCD中,EFGH是正方形.已知10cmAF,7cmHC,求长方形ABCD的周长.4-1-3.巧求周长学生版page8of9HGFEDCBA【例17】如右图所示,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和L形区域乙和丙.甲的周长为4厘米,乙的边长是甲的周长的1.5倍,丙的周长是乙的周长的1.5倍,那么丙的周长为多少厘米?EF长多少厘米?乙丙甲JIFEHGDCBA【例18】用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是244厘米,那么平行四边形和三角形各有多少个?【巩固】用若干个边长都是2厘米的平行四边形与三角形(如右图)拼接成一个大的平行四边形,已知大平行四边形的周长是236厘米,那么平行四边形和三角形各有多少个?【例19】有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长.【巩固】右图的长方形被分割成5个正方形,已知原长方形的面积为120平方厘米,求原长方形的长与宽.4-1-3.巧求周长学生版page9of9【例20】冯大叔给儿子做玩具用8个一样大的小长方形拼图,拼出了如图甲、乙的两种图案:图案甲是一个正方形,图案乙是一个大的长方形;图案甲的中间留下了边长是2cm的正方形小洞.求小长方形的长和宽?【例21】用同样的长方形条砖,在一个盆的周围砌成一个正方形边框,如右图所示.已知外面大正方形的周长是264厘米,里面小正方形的面积是900平方厘米,每块长方形条砖的长是_________厘米,宽是______厘米.【例22】(第二届希望杯复试)将若干个边长为1的正六边形(即单位六边形)拼接起来,得到一个拼接图形,如图:周长=14周长=12周长=10周长=6那么,要拼接成周长等于18的拼接图形,需要多少个单位六边形?画出对应的一种图形.乙甲