中考数学压轴题(动点)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1中考数学压轴题总结(动点)(一)因动点产生的相似三角形问题例1,已知抛物线的方程C1:1(2)()yxxmm(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.图1思路点拨1.第(3)题是典型的“牛喝水”问题,当H落在线段EC上时,BH+EH最小.2.第(4)题的解题策略是:先分两种情况画直线BF,作∠CBF=∠EBC=45°,或者作BF//EC.再用含m的式子表示点F的坐标.然后根据夹角相等,两边对应成比例列关于m的方程.满分解答(1)将M(2,2)代入1(2)()yxxmm,得124(2)mm.解得m=4.(2)当m=4时,2111(2)(4)2442yxxxx.所以C(4,0),E(0,2).所以S△BCE=1162622BCOE.(3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH最小.设对称轴与x轴的交点为P,那么HPEOCPCO.因此234HP.解得32HP.所以点H的坐标为3(1,)2.(4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.由于∠BCE=∠FBC,所以当CEBCCBBF,即2BCCEBF时,△BCE∽△FBC.2设点F的坐标为1(,(2)())xxxmm,由''FFEOBFCO,得1(2)()22xxmmxm.解得x=m+2.所以F′(m+2,0).由'COBFCEBF,得244mmBFm.所以2(4)4mmBFm.由2BCCEBF,得222(4)4(2)4mmmmm.整理,得0=16.此方程无解.图2图3图4②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,由于∠EBC=∠CBF,所以BEBCBCBF,即2BCBEBF时,△BCE∽△BFC.在Rt△BFF′中,由FF′=BF′,得1(2)()2xxmxm.解得x=2m.所以F′(2,0)m.所以BF′=2m+2,2(22)BFm.由2BCBEBF,得2(2)222(22)mm.解得222m.综合①、②,符合题意的m为222.例2,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,3图1思路点拨1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长.3.按照两条直角边对应成比例,分两种情况列方程.4.把△DCA可以分割为共底的两个三角形,高的和等于OA.满分解答(1)因为抛物线与x轴交于A(4,0)、B(1,0)两点,设抛物线的解析式为)4)(1(xxay,代入点C的坐标(0,-2),解得21a.所以抛物线的解析式为22521)4)(1(212xxxxy.(2)设点P的坐标为))4)(1(21,(xxx.①如图2,当点P在x轴上方时,1<x<4,)4)(1(21xxPM,xAM4.如果2COAOPMAM,那么24)4)(1(21xxx.解得5x不合题意.如果21COAOPMAM,那么214)4)(1(21xxx.解得2x.此时点P的坐标为(2,1).②如图3,当点P在点A的右侧时,x>4,)4)(1(21xxPM,4xAM.解方程24)4)(1(21xxx,得5x.此时点P的坐标为)2,5(.解方程214)4)(1(21xxx,得2x不合题意.③如图4,当点P在点B的左侧时,x<1,)4)(1(21xxPM,xAM4.解方程24)4)(1(21xxx,得3x.此时点P的坐标为)14,3(.解方程214)4)(1(21xxx,得0x.此时点P与点O重合,不合题意.综上所述,符合条件的点P的坐标为(2,1)或)14,3(或)2,5(.4图2图3图4(3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为221xy.设点D的横坐标为m)41(m,那么点D的坐标为)22521,(2mmm,点E的坐标为)221,(mm.所以)221()22521(2mmmDEmm2212.因此4)221(212mmSDACmm424)2(2m.当2m时,△DCA的面积最大,此时点D的坐标为(2,1).(二)因动点产生的等腰三角形问题例3,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1.5思路点拨1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最小.2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3),代入点C(0,3),得-3a=3.解得a=-1.所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.(2)如图2,抛物线的对称轴是直线x=1.当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.设抛物线的对称轴与x轴的交点为H.由BHPHBOCO,BO=CO,得PH=BH=2.所以点P的坐标为(1,2).图2(3)点M的坐标为(1,1)、(1,6)、(1,6)或(1,0).考点伸展第(3)题的解题过程是这样的:设点M的坐标为(1,m).在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.此时点M的坐标为(1,1).②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得6m.此时点M的坐标为(1,6)或(1,6).③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.当M(1,6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).图3图4图56例4,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P重合在一起.满分解答(1)如图2,过点B作BC⊥y轴,垂足为C.在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,23OC.所以点B的坐标为(2,23).(2)因为抛物线与x轴交于O、A(4,0),设抛物线的解析式为y=ax(x-4),代入点B(2,23),232(6)a.解得36a.所以抛物线的解析式为23323(4)663yxxxx.(3)抛物线的对称轴是直线x=2,设点P的坐标为(2,y).①当OP=OB=4时,OP2=16.所以4+y2=16.解得23y.当P在(2,23)时,B、O、P三点共线(如图2).②当BP=BO=4时,BP2=16.所以224(23)16y.解得1223yy.③当PB=PO时,PB2=PO2.所以22224(23)2yy.解得23y.综合①、②、③,点P的坐标为(2,23),如图2所示.7图2图3考点伸展如图3,在本题中,设抛物线的顶点为D,那么△DOA与△OAB是两个相似的等腰三角形.由23323(4)(2)663yxxx,得抛物线的顶点为23(2,)3D.因此23tan3DOA.所以∠DOA=30°,∠ODA=120°.(三)因动点产生的直角三角形问题例5:在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.思路点拨1.由点A(1,k)或点B(-1,-k)的坐标可以知道,反比例函数的解析式就是kyx.题目中的k都是一致的.2.由点A(1,k)或点B(-1,-k)的坐标还可以知道,A、B关于原点O对称,以AB为直径的圆的圆心就是O.3.根据直径所对的圆周角是直角,当Q落在⊙O上是,△ABQ是以AB为直径的直角三角形.满分解答(1)因为反比例函数的图象过点A(1,k),所以反比例函数的解析式是kyx.当k=-2时,反比例函数的解析式是2yx.(2)在反比例函数kyx中,如果y随x增大而增大,8那么k<0.当k<0时,抛物线的开口向下,在对称轴左侧,y随x增大而增大.抛物线y=k(x2+x+1)=215()24kxk的对称轴是直线12x.图1所以当k<0且12x时,反比例函数与二次函数都是y随x增大而增大.(3)抛物线的顶点Q的坐标是15(,)24k,A、B关于原点O中心对称,当OQ=OA=OB时,△ABQ是以AB为直径的直角三角形.由OQ2=OA2,得222215()()124kk.解得1233k(如图2),2233k(如图3).图2图3考点伸展如图4,已知经过原点O的两条直线AB与CD分别与双曲线kyx(k>0)交于A、B和C、D,那么AB与CD互相平分,所以四边形ACBD是平行四边形.问平行四边形ABCD能否成为矩形?能否成为正方形?如图5,当A、C关于直线y=x对称时,AB与CD互相平分且相等,四边形ABCD是矩形.因为A、C可以无限接近坐标系但是不能落在坐标轴上,所以OA与OC无法垂直,因此四边形ABCD不能成为正方形.图4图59例6,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段34PQAB时,求tan∠CED的值;②当以C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.图1思路点拨1.第(1)、(2)题用待定系数法求解析式,它们的结果直接影响后续的解题.2.第(3)题的关键是求点E的坐标,反复用到数形结合,注意y轴负半轴上的点的纵坐标的符号与线段长的关系.3.根据C、D的坐标,可以知道直角三角形CDE是等腰直角三角形,这样写点E的坐标就简单了.满分解答(1)设抛物线的函数表达式为2(1)yxn,代入点C

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功