高等数学-习题答案-方明亮-第七章

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高等数学方明亮版第七章习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1)(,)0,0xyxy;(2)22(,)14xyxy;(3)2(,)xyyx;(4)2222(,)(1)1(2)4xyxyxy且.解(1)集合是开集,无界集;边界为{(,)0xyx或0}y.(2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}xyxyxyxy.(3)集合是开集,区域,无界集;边界为2{(,)}xyyx.(4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}xyxyxyxy2.已知函数(,)vfuvu,试求(,)fxyxy.解()(,)xyfxyxyxy.3.设44(,)2fxyxyxy,证明:2(,)(,)ftxtytfxy.解4422442244(,)222ftxtytxtytxytxytxytxyxy2(,)tfxy.4.设22xyyfxx(0)x,求()fx.解由于222211yxyxyfxx,则21fxx.5.求下列各函数的定义域:(1)2222xyzxy;(2)ln()arcsinyzyxx;(3)ln()zxy;(4)22221xyzab;(5)zxy;(6)22arccoszuxy.解(1)定义域为(,)xyyx;(2)定义域为(,)xyxyx;(3)定义域为(,)0xyxy,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1xyxyab;(5)定义域为2(,)0,0,xyxyxy;(6)定义域为22222(,,)0,0xyzxyzxy.6.求下列各极限:(1)22(,)(2,0)limxyxxyyxy;(2)2222(,)(0,0)1coslimln(1)xyxyxy;(3)22(,)(0,0)1lim()sinxyxyxy;(4)(,)(2,0)sin()limxyxyy;(5)1(,)(0,1)lim(1)xxyxy;(6)22(,)(,)lim()xyxyxye.解:(1)22(,)(2,0)4lim(2,0)22xyxxyyfxy;(2)2222(,)(0,0)0011cos1cos12limlimlimln(1)ln(1)2xyuuuxyuxyuu;(3)因为22(,)(0,0)lim()0xyxy,且1sin1xy有界,故22(,)(0,0)1lim()sin0xyxyxy;(4)(,)(2,0)(,)(2,0)sin()sin()limlim212xyxyxyxyxyxy;(5)111(,)(0,1)(,)(0,1)lim(1)lim(1)yxyxxyxyxyxyee;(6)当0xN,0yN时,有222()()0xyxyxyxyee,而22(,)(,)22limlimlimlim0xyuuuxyuuuxyuueeee按夹逼定理得22(,)(,)lim()0.xyxyxye7.证明下列极限不存在:(1)(,)(0,0)limxyxyxy;(2)设2224222,0,(,)0,0,xyxyxyfxyxy(,)(0,0)lim(,)xyfxy.证明(1)当(,)xy沿直线ykx趋于(0,0)时极限(,)(0,0)01limlim1xyxykxxyxkxkxyxkxk与k有关,上述极限不存在.(2)当(,)xy沿直线yx和曲线2yx趋于(0,0)有2242422(,)(0,0)00limlimlim01xyxxyxyxxyxxxxyxxx,2222442444(,)(0,0)001limlimlim22xyxxyxyxxyxxxxyxxx,故函数(,)fxy在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()zxy;(2)212zyx.解(1)函数在(0,0)处无定义,故该点为函数22ln()zxy的间断点;(2)函数在抛物线22yx上无定义,故22yx上的点均为函数212zyx的间断点.9.用二重极限定义证明:22(,)(0,0)lim0xyxyxy.证2222222222221110222xyxyxyxyxyxyxy(,)Pxy,其中22||xyOP,于是,0,20;当0时,有220xyxy成立,由二重极限定义知22(,)(0,0)lim0xyxyxy.10.设(,)sinfxyx,证明(,)fxy是2R上的连续函数.证设2000(,)PxyR.0,由于sinx在0x处连续,故0,当0||xx时,有0|sinsin|xx.以上述作0P的邻域0(,)UP,则当0(,)(,)PxyUP时,显然00||(,)xxPP,从而000|(,)(,)||sinsin|fxyfxyxx,即(,)sinfxyx在点000(,)Pxy连续.由0P的任意性知,sinx作为x、y的二元函数在2R上连续.习题7-21.设(,)zfxy在00(,)xy处的偏导数分别为00(,)xfxyA,00(,)yfxyB,问下列极限是什么?(1)00000(,)(,)limhfxhyfxyh;(2)00000(,)(,)limhfxyfxyhh;(3)00000(,2)(,)limhfxyhfxyh;(4)00000(,)(,)limhfxhyfxhyh.解(1)0000000(,)(,)lim(,)xhfxhyfxyzxyAh;(2)000000000000(,)(,)(,)(,)limlim(,)yhhfxyfxyhfxyhfxyzxyBhh;(3)0000000000(,2)(,)(,2)(,)limlim222hhfxyhfxyfxyhfxyBhh;(4)00000(,)(,)limhfxhyfxhyh0000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim(,)(,)(,)(,)limlim2.hhhhfxhyfxyfxyfxhyhfxhyfxyfxhyfxyhfxhyfxyfxhyfxyhhAAA2.求下列函数的一阶偏导数:(1)xzxyy;(2)lntanxzy;(3)exyz;(4)22xyzxy;(5)222ln()zxxy;(6)ln()zxy;(7)sec()zxy;(8)(1)yzxy;(9)arctan()zuxy(10)zxuy.解(1)1zyxy,2zxxyy;(2)12211tanseccotseczxxxxxyyyyyy,12222tanseccotseczxxxxxxyyyyyyy;(3)xyxyzeyyex,xyxyzexxey;(4)2222222222()2()1zxxyxyyxyxyyyxxyyxxy,2222222222()2()1zyxyxyxxyxyxxyxyxyxy;(5)232222222222ln()22ln()zxxxxyxxxyxxyxy,22222222zxxyyyxyxy;(6)1112ln()2ln()zyxxyxyxxy,1112ln()2ln()zxyxyxyyxy;(7)tan()sec()tan()sec()zxyxyyyxyxyx,tan()sec()tan()sec()zxyxyxxxyxyy;(8)121(1)(1)yyzyxyyyxyx,ln(1)(1)ln(1)1yxyzxyeyxyxyyyxy;(9)11221()()1()1()zzzzuzxyzxyxxyxy,11221()()(1)1()1()zzzzuzxyzxyyxyxy,221()ln()()ln()1()1()zzzzuxyxyxyxyzxyxy;(10)111zzuxzxzxyyyy,12zzuxxzxzyyyyy,lnzuxxyyy.3.设(,)ln2yfxyxx,求(1,0)xf,(1,0)yf.解法一由于(,0)lnfxx,所以1(,0)xfxx,(1,0)1xf;由于(1,)ln12yfy,所以11(1,)212yfyy,1(1,0)2yf.解法二21(,)122xyfxyyxxx,11(,)22yfxyyxxx,10(1,0)110212xf,111(1,0)02212yf.4.设(,)(1)arcsinxfxyxyy,求(,1)xfx.解法一由于(,1)(11)arcsin1xfxxx,(,1)()1xfxx.解法二111(,)112xyfxyyxxyy,(,1)1xfx.5.设2(,)xtyfxyedt,求(,)xfxy,(,)yfxy.解2(,)xxfxye,2(,)yfxye.6.设yxzxyxe,证明zzxyxyzxy.解由于21yyyxxxzyyyexeyexxx,1yyxxzxxexeyx,所以1()yyyyxxxxzzyxyxyeyxexyexyxyyexyxyxxyxexyxyz.7.(1)22,44xyzy在点(2,4,5)处的切线与x轴正向所成的倾角是多少?(2)221,1zxyx在点(1,1,3)处的切线与y轴正向所成的倾角是多少?解(1)按偏导数的几何意义,(2,4)xz就是曲线在点(2,4,5)处的切线对于x轴正向所成倾角的斜率,而21(2,4)12xxzx,即tan1k,于是倾角4.(2)按偏导数的几何意义,(1,1)yz就是曲线在点(1,1,3)处的切线对于y轴正向所成倾角的斜率,而2121(1,1)3211yyyzy,即1tan3k,于是倾角6.8.求下列函数的二阶偏函数:(1)已知33sinsinzxyyx,求2zxy;(2)已知lnxzy,求2zxy;(3)已知22ln()zxxy,求22zx和2zxy;(4)arctanyzx求22zx、22zy、2zxy和2zyx.解(1)233sincoszxyyxx,2223cos3coszxyyxxy;(2)lnln1lnlnxxzyyyyxxx

1 / 46
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功