高等数学复旦大学出版社习题答案十二

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

128习题十二1.指出下列各微分方程的阶数:(1)2()20;xy'yy'x一阶(2)20;xy''xy'y二阶(3)220;xy'''y''xy三阶(4)(76)d()d0.xyxxyy一阶2.指出下列各题中的函数是否为所给微分方程的解:2(1)2,5xyyyx;解:由25yx得10yx代入方程得22102510xxxx故是方程的解.(2)0,3sin4cosyyyxx;解:3cos4sin;3sin4cosyxxyxx代入方程得3sin4cos3sin4cos0xxxx.故是方程的解.2(3)20,exyyyyx;解:2222ee(2)e,(24)exxxxyxxxxyxx代入方程得2e0x.故不是方程的解.12121212(4)()0,ee.xxyyyyCC解:12122211221122ee,eexxxxyCCyCC代入方程得1212122211221211221212ee()(ee)(ee)0.xxxxxxCCCCCC故是方程的解.3.在下列各题中,验证所给二元方程为所给微分方程的解:12922(1)(2)2,;xyyxyxxyyC证:方程22xxyyC两端对x求导:220xyxyyy得22xyyxy代入微分方程,等式恒成立.故是微分方程的解.2(2)()20,ln().xyxyxyyyyyxy证:方程ln()yxy两端对x求导:11yyxy(*)得(1)yyxy.(*)式两端对x再求导得22211(1)1yyxxyy将,yy代入到微分方程,等式恒成立,故是微分方程的解.4.从下列各题中的曲线族里,找出满足所给的初始条件的曲线:220(1),5;xxyCy解:当0x时,y=5.故C=-25故所求曲线为:2225yx21200(2)()e,0,1.xxxyCCxyy解:2212(22)exyCCCx当x=0时,y=0故有10C.又当x=0时,1y.故有21C.故所求曲线为:2exyx.5.求下列各微分方程的通解:(1)ln0xyyy;130解:分离变量,得d1dlnyxyyx积分得11dlndlnyxyxlnlnlnlnyxclnycx得ecxy.1(2);1yyx解:分离变量,得dd11yxyx积分得dd11yxyx得通解:2121.yxc(3)(ee)d(ee)d0xyxxyyxy;解:分离变量,得eedd1e1eyyyxyx积分得ln(e1)ln(e1)lnyxc得通解为(e1)(e1)xyc.(4)cossindsincosd0xyxxyy;解:分离变量,得coscosdd0sinsinxyxyxy积分得lnsinlnsinlnyxc得通解为sinsin.yxc(5)yxy;131解:分离变量,得ddyxxy积分得211ln2yxc得通解为2112e(e)xcycc(6)210xy;解:21yx积分得(21)dyxx得通解为2yxxc.32(7)4230xxyy;解:分离变量,得233d(42)dyyxxx积分得342yxxc即为通解.(8)exyy.解:分离变量,得ededyxyx积分得ededyxyx得通解为:eeyxc.6.求下列各微分方程满足所给初始条件的特解:20(1)e,0xyxyy;解:分离变量,得2ededyxyx积分得21ee2yxc.以0,0xy代入上式得12c故方程特解为21e(e1)2yx.π2(2)sinln,exyxyyy.132解:分离变量,得ddlnsinyxyyx积分得tan2excy将π,e2xy代入上式得1c故所求特解为tan2exy.7.求下列齐次方程的通解:22(1)0xyyyx;解:2d1dyyyxxx令ddddyyuuuxxxx原方程变为2dd1uxxu两端积分得2ln(1)lnlnuuxc2211uucxyycxxx即通解为:222yyxcxd(2)lndyyxyxx;解:dlndyyyxxx令yux,则ddddyuuxxx原方程变为dd(ln1)uxuux积分得ln(ln1)lnlnuxcln1ln1ucxycxx即方程通解为1ecxyx13322(3)()dd0xyxxyx解:2221ddyyxyxyxxyx令yux,则ddddyuuxxx原方程变为2d1duuuxxu即d1d,dduxxuuxux积分得211lnln2uxc2122ln2lnyxcx故方程通解为22221ln()()yxcxcc332(4)()d3d0xyxxyy;解:333221dd33yyxyxxxyyx令yux,则ddddyuuxxx原方程变为32d1d3uuuxxu即233dd12uxuux积分得311ln(21)lnln2uxc以yx代替u,并整理得方程通解为332yxcx.d(5)dyxyxxy;134解:1dd1yyxyxx令yux,则ddddyuuxxx原方程变为d1d1uuuxxu分离变量,得211dd1uuxux积分得211arctanln(1)lnln2uuxc以yx代替u,并整理得方程通解为到2arctan22211e.()yxxyccc22(6)yyxxy解:2dd11yyxxyx即2d1dxxxyyy令xvy,则dd,ddxvxyvvyyy,原方程可变为2d1dvvyvvy即2d1dvyvy分离变量,得2dd1vyyv积分得2ln(1)lnlnvvyc.即21yvvc1352222121yvvcyyvcc以yvx代入上式,得222cycx即方程通解为222ycxc.8.求下列各齐次方程满足所给初始条件的解:220(1)(3)d2d0,1xyxyxyxy;解:22dd3yyxxyx令yux,则得2d2d3uuuxxu分离变量,得233dduxuuux积分得3lnln(1)ln(1)lnuuucx即231lnlnucux得方程通解为223yxcy以x=0,y=1代入上式得c=1.故所求特解为223yxy.1(2),2xxyyyyx.解:设yux,则ddddyuuxxx原方程可变为ddxuux积分得21lnln2uxc.得方程通解为222(lnln)yxxc136以x=1,y=2代入上式得c=e2.故所求特解为222(ln2)yxx.9.利用适当的变换化下列方程为齐次方程,并求出通解:(1)(253)d(246)d0xyxxyy解:设1,1xXyY,则原方程化为25d25d2424YYXYXYXXYX令d25d24YuuuuXXXu242dd472XuXuuu2222211(87)3lnd247213dln(472)224721114ln(472)d262411141ln(472)lnln262uXuuuuuuuuuuuuuuuucu262216232642232332416ln3ln(472)lnln()241(472)2(41)(2)(41)(2),()uXuucccuuXuucuXuucXuuccc代回并整理得23(43)(23),()yxyxccc.(2)(1)d(41)d0;xyxyxy解:d1d41yxyxyx作变量替换,令1,0xXyYY137原方程化为1dd414YYXYXYXXYX令YuX,则得2d1d14d14d14uuuuuXXXuXu分离变量,得214dd14uXuux积分得222211d(14)lnd1421411arctan2ln(14)22uXuuuuuc即22lnln(14)arctan2Xuuc22ln(14)arctan2Xuuc代回并整理得222ln[4(1)]arctan.1yyxcx(3)()d(334)d0xyxxyy;解:作变量替换,vxy则dd1ddyvxx原方程化为d1d34vvxv11d2(2)d3434dd2(2)31ddd223ln(2)232ln(2)2,(2)vvxvvvxvvvxvvvxcvvxccc代回并整理得32ln(2).xyxycd1(4)1dyxxy.138解:令,uxy则dd1dduyxx原方程可化为d1duxu分离变量,得dduux积分得2112uxc2122uxc故原方程通解为21()2.(2)xyxccc10.求下列线性微分方程的通解:(1)exyy;解:由通解公式ddeeeede()eedxxxxxxxyxcxcxc2(2)32xyyxx;解:方程可化为123yyxxx由通解公式得11dd22e(3)ed12(3)d132.32xxxxyxxcxxxxcxxcxxxsin(3)cose;xyyx解:cosdcosdsinsinee().eedxxxxxxyxcxc(4)44yxyx;解:22(4)d(4)d22ee4ed4edxxxxxxyxxcxxc222222eee1xxxcc.3(5)(2)2(2)xyyx;解:方程可化为2d12()d2yyxxxx13911dd222ln(2)2ln(2)3e2(2)ede2(2)ed(2)2(2)d(2)(2)xxxxxxyxxcxxcxxxcxcx22(6)(1)24.xyxyx解:方程可化为2222411xxyyxx222222dd1123ln(1)224eed14e4d3(1)xxxxxxxxyxcxxcxxcx11.求下列线性微分方程满足所给初始条件的特解:πd11(1)sin,1dxyyxyxxx;解:11dd11sinesind[cos]edxxxxxyxxccxxcxxx以π,1xy代入上式得π1c,故所求特解为1(π1cos)yxx.2311(2)(23)1,0xyxyyx.解:22323d3lnxxxxcx22223323d23+3lnd3lneeede

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功