90习题四1.利用定义计算下列定积分:(1)d();baxxab解:将区间[a,b]n等分,分点为(),1,2,,1;iibaxainn记每个小区间1[,]iixx长度为,ibaxn取,1,2,,,iixin则得和式211()2(1)()[()]()2nniiiiibabannfxabaabannn由定积分定义得220122()(1)dlim()lim[()]21().2nbiianibannxxfxabanba(2)10ed.xx解:将区间[0,1]n等分,分点为(1,2,,1),iixinn记每个小区间长度1,ixn取(1,2,,),iixin则和式111()innniiiifxen12101111111edlimelim(eee)1e(1e)1e(e1)limlim1ee11e(e1)1lime1.1innxnnnnnninnnnnnnnnxnnnnnnn2.利用定积分概念求下列极限:111(1)lim122nnnn91解:原式110011111limdln2.ln(1)121111nxxnnxnnn221(2)lim(2).nnnnn解:原式13120012122lim.d.33nnxxxnnnn3.用定积分的几何意义求下列积分值:10(1)2dxx;解:由几何意义可知,该定积分的值等于由x轴、直线x=1、y=2x所围成的三角形的面积,故原式=1.220(2)d(0)RRxxR.解:由几何意义可知,该定积分的值等于以原点为圆心,半径为R的圆在第一象限内的面积,故原式=21π4R.4.证明下列不等式:2e22e(1)eelnd2(ee)xx;证明:当2eex时,2lnelnlne,x即1lne.x由积分的保序性知:222eeeeeedlnd2dxxxx即2e22eeelnd2(ee).xx(2)2101ede.xx证明:当01.x时,21ee,x由积分的保序性知:2111000dededxxxx即2101ede.xx5.证明:(1)120limd0;1nnxxx证明:当102x时,0,1nnxxx92于是1112200110d(),121nnxnxxnx而111lim()0,12nnn由夹逼准则知:120limd0.1nnxxx(2)π40limsind0.nnxx证明:由中值定理得π440ππsindsin(0)sin,44nnxx其中π0,4故π40πlimsindlimsin0(0sin1).4nnnnxx6.计算下列定积分:43(1)d;xx解:原式4323822333x.221(2)dxxx;解:原式012222101()d()d()dxxxxxxxxx01232233210111111132233251511.6666xxxxxxπ0(3)()dfxx,其中π,0,2()πsin,π;2xxfxxx解:原式πππ2π222π0π2021πdsindcos1.28xxxxxx222(4)max{1,}d;xx93解:原式121122233211212011ddd2.333xxxxxxxπ20(5)1sin2d.xx解:原式πππ242π004d(cossin)d(sincos)dsincosxxxxxxxxxππ24π04(sincos)(cossin)2(21).xxxx7.计算下列导数:220d(1)1ddxttx解:原式421xx.324dd(2)d1xxtxt解:原式3224412800dddd32.dd1111xxttxxxxttxx8.求由参数式2020sindcosdttxuuyuu所确定的函数y对x的导数ddyx.解:222ddcosdcot.ddsindyytttxxtt9.求由方程00edcosd0yxtttt所确定的隐函数()yyx的导数.解:方程两边对x求导,有ecos0yyx又e1sinyx故cossin1xyx.10.求下列极限:2030ln(12)d(1)lim;xxttx94解:原式21222300ln(12)22limlimln(12).333xxxxxx2220020ed(2)lim.edxtxxtttt解:原式2222200220002edeed1lim2lim2lim2.12eexxtxtxxxxxttxxx11.a,b,c取何实数值才能使2201limdsin1xbxttcxaxt成立.解:因为0x时,sin0xax而该极限又存在,故b=0.用洛必达法则,有2220000,1,1limlim2coscoslim2,1.1sinxxxaxxxxaxaaxx所以1,0,2abc或1,0,0abc.12.利用基本积分公式及性质求下列积分:2(1)(5)dxxx;解:原式51732222210d5d73xxxxxxc.(2)3edxxx;解:原式=(3e)(3e)d.ln(3e)xxxc2232(3)d;11xxx解:原式=32211d2d3arctan2arcsin.11xxxxcxx22(4)d;1xxx解:原式=22211dddarcsin.11xxxxxxcxx952(5)sind2xx;解:原式=1cos1dsin.222xxxxc21(6)d;1xxxx解:原式=357144444dd4.7xxxxxxc2d(7);xx解:原式=21dxxcx.(8)d;xxx解:原式=35222d5xxxc.2d(9);xxx解:原式=25322d3xxxc.2(10)(32)d;xxx解:原式=32132.32xxxc422331(11)d;1xxxx解:原式=23213ddarctan.1xxxxxcx3(12)d2exxx;解:原式=2e3ln.xxce(13)ed;1xxxx解:原式=1edde2.xxxxxcx962352(14)d;3xxxx解:原式=5222d5d2233ln3xxxxxc.(15)sec(sectan)dxxxx;解:原式=2secdsectandtansecxxxxxxxc.1(16)d1cos2xx;解:原式=22111dsecdtan2cos22xxxxcx.cos2(17)dcossinxxxx;解:原式=(cossin)dsincos.xxxxxc22cos2(18)dcossinxxxx.解:原式=2211ddcottan.sincosxxxxcxx13.一平面曲线过点(1,0),且曲线上任一点(x,y)处的切线斜率为2x-2,求该曲线方程.解:依题意知:22yx两边积分,有22yxxc又x=1时,y=0代入上式得c=1,故所求曲线方程为221yxx.14.(略).15.利用换元法求下列积分:2(1)cos()dxxx;解:原式=22211cosdsin.22xxxc3sincos(2)dsincosxxxxx;解:原式=12333(sincos)d(sincos)(sincos).2xxxxxxc972d(3)21xx;解:原式=11111dlnln2121221212222xcxxxx121ln.2221xcx3(4)cosdxx;解:原式=231(1sin)dsinsinsin.3xxxxc(5)coscosd2xxx;解:原式=1133dsinsin.coscos232222xxxxcx(6)sin2cos3dxxx;解:原式=111(sin5sin)dcoscos5.2210xxxxxc2arccos210(7)d1xxx;解:原式=2arccos2arccos1110d(2arccos)10.22ln10xxxc21ln(8)d(ln)xxxx;解:原式=21(ln)d(ln).lnxxxxcxxarctan(9)d(1)xxxx;解:原式=22arctand(arctan)(arctan).xxxclntan(10)dcossinxxxx;解:原式=21lntand(lntan)(lntan).2xxxc5(11)edxx;解:原式=51e5xc.98d(12)12xx;解:原式=1ln.122cxsin(13)dttt;解:原式=2sind2cos.tttc102(14)tansecdxxx;解:原式=10111tand(tan)tan.10xxxc2d(15)lnxxx;解:原式=21(ln)d(ln).lnxxcx22(16)tan1d1xxxx;解:原式=222tan1d(1)ln.cos1xxcxd(17)sincosxxx;解:原式=2ddtanln.tantancostanxxcxxxx2(18)edxxx;解:原式=22211ed()e.22xxxc10(19)(4)dxx;解:原式=111(4)11xc.3d(20)23xx;解:原式=123311(23)d(23)(23)32xxxc.2(21)cos()dxxx;解:原式=2211sin()sin().22dxxc99(22)daxxax;解:原式=122222222d1d()d()21xaxaxaaxaxaxxa22arcsin.xaaxcad(23)eexxx;解:原式=2d(e)arctane.1(e)xxxcln(24)dxxx;解:原式=21lnd(ln)(ln).2xxxc23(25)sincosdxxx;解:原式=223511sin(1sin)d(sin)sinsin.35xxxxxc42d(26)1xxx;解:原式32tan444seccos1sinddd(sin)tansinsinxtttttttttt令311,3sinsinctt又221cos,sin11xttxx故上式223(21)1.3xxcxd(27)12xx;解:原式2dln|1|2ln(12).1xtttttcxxct令(28)29d;xxx100解:原式3sec223tand3(sec1)d3tan3xtttttttc令,又2213tan19,arccos,33xtxtx故上式=2393a