你还记得怎样求比值吗?我们已经学过了比的有关知识,说说你对比已经有了哪些了解?求下面各比的比值:3∶5=3/518∶30=3/50.4∶0.2=2=2=5/21.8∶0.95/8∶1/42∶87.5∶39∶27=5/2=1/3=1/4(1)(2)(3)(4)你们有什么发现吗?3∶518∶300.4∶0.21.8∶0.9∶2∶87.5∶39∶27(1)(2)(3)(4)发现:85413∶518∶300.4∶0.21.8∶0.9∶7.5∶3(1)(2)(3)在数学中规定,像这样的一些式子就叫做比例。到底什么是比例呢?观察这些式子,你能说出什么叫做比例吗?发现:8541表示两个比相等的式子叫做比例。注意:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。得出:你觉得比和比例一样吗?有什么区别?归纳:比例由两个比组成,有四个数;比是一个比,有两个数表示两个比相等的式子叫做比例。16∶2=32∶4外项内项指出下面比例的外项和内项.4.5∶2.7=10∶66∶10=9∶15做一做2131∶=6∶443410.6∶0.2∶=外项外项内项内项外项内项外项内项探究比例的基本性质3、5、10、6运用这四个数,你能组成几个等式?(等号两边各两个数)3×10=5×63:5=6:103:6=5:105:3=10:66:3=10:5得出:发现规律:两个外项的积等于两个内项的积。验证16∶2=32∶4外项内项内项积是:2×32=64外项积是:16×4=642×32=16×4验证:是不是任意一个比例都有这样的规律?3∶5=18∶300.4∶0.2=1.8∶0.95/8∶1/4=7.5∶3(1)(2)(3)请任意写一个比例并验证。不成比例的有没有这个规律?并验证。=9∶272∶8验证得出性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。问:是那些数的乘积相等。53=3018小结:刚才我们是怎样发现比例的基本性质的?计算下面比例的外项积和内项积.4.5∶2.7=10∶66∶10=9∶15做一做2131∶=6∶443410.6∶0.2∶=4.5×6=27外项积:内项积:外项积:内项积:外项积:内项积:外项积:内项积:2.7×10=276×15=9010×9=9021×4=231×6=20.6×41=0.150.2×43=0.15结论16∶2=32∶4外项内项内项积是:2×32=64外项积是:16×4=642×32=16×4在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质.做一做应用比例的基本性质,判断下面哪组中的两个比可以组成比例.6∶3和8∶50.2∶2.5和4∶50因为:6×5=303×8=24所以:6∶3和8∶5不能组成比例.因为:0.2×50=102.5×4=10所以:0.2∶2.5=4∶503024≠10=10做一做应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.6∶9和9∶12所以:6∶9和9∶12不能组成比例.因为:6×12=729×9=81比例的意义:因为:6∶9=329∶12=43比例的基本性质:所以:6∶9和9∶12不能组成比例.32≠4372≠81做一做应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.1.4∶2和7∶10因为:1.4∶2=0.7所以:1.4∶2和7∶10可以组成比例.因为:1.4×10=142×7=14比例的意义:7∶10=0.7比例的基本性质:0.7=0.714=14所以:1.4∶2和7∶10可以组成比例.做一做应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.因为:0.5∶0.2=2.5比例的意义:比例的基本性质:2.5=2.50.125=0.1250.5∶0.2和85∶4185∶41=2.541因为:0.5×=0.1250.2×85=0.125所以:0.5∶0.2和85∶41可以组成比例.所以:0.5∶0.2和85∶41可以组成比例.思考下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个).2、3、4和6因为2×6=3×4所以这四个数可以组成比例2∶3=4∶62∶4=3∶66∶4=3∶26∶3=4∶24∶2=6∶34∶6=2∶33∶6=2∶43∶2=6∶4应用比例的基本性质判断下面的比例是否正确:1.6:3=8:52.0.2:2.5=4:503.2:3=:12134.1.2:0.6=10:5达标测评:1应用比例的意义判断下面的比例是否正确:⑴3:5=9:15⑵2.5:5=25:0.510022004=⑶1316=:2:4⑷2应用比例的基本性质判断下面的比例是否正确:⑴6:9=9:12⑵1.4:2=7:105814⑶5:2=:34110⑷:=7.5:13.选择题(把正确答案的序号填入括号内)(1)()与3:5能组成比例。A.10:6B.:C.30:50(2)()与5:8能组成比例。A.:B.10:16C.3:5(3)4:5与()能组成比例。A.:B.8:10C.15:12(4)7:9与()能组成比例。A.70:90B.:C.3:413151518141517194.填空:(1)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是()。(2)如果5a=3b,那么,=,=。()()()()abba5.下面每组中的四个数都可以组成比例,把组成的比例写出来:(1)4、5、12和15。(2)2、4、5和10。复习1.解下列方程。3x=8×60.5x=1.2×4解:x=48÷3x=16解x=4.8÷0.5x=9.6复习2.什么叫作比例?3.比例的基本性质是什么?表示两个比相等的式子叫作比例。在比例里,两个外项的积等于两个内项的积,这叫作比例的基本性质。4.根据比例的基本性质,将下列各比例改写成乘积相等的式子。(1)4︰5=8︰10(2)3︰12=5︰204×10=5×83×20=12×5根据比例的基本性质,先设()是X,再将比例改写成乘积相等的式子。3︰4=6︰()3︰4=6︰X3×X=4×63X=24X=8解:设放大后照片的宽是x厘米。6:4=13.5:x6x=4×13.56x=54x=9答:放大后照片的宽是9厘米。求比例中的未知项,叫作解比例。解:1.2x=75×0.41.2x=30x=30÷1.2x=25解:3x=9×43x=36x=36÷3x=12解:0.1x=0.01×1000.1x=1x=1÷0.1x=109︰x=3︰4解比例。x10001.01.0=把左边的图形按比例放大或缩小后得到右边的图形,求未知数。。解:20︰12=50︰x20x=12×5020x=600x=600÷20x=30解:4.8:6.4=3:x4.8x=6.4×34.8x=19.2x=19.2÷4.8x=4小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水,第二杯用了30毫升蜂蜜和250毫升水。(1)分别写出两杯蜂蜜水中蜂蜜与水体积的比,看看它们能否组成比例。(2)按照第一杯蜂蜜水中蜂蜜与水体积的比计算,300毫升水中应加入蜂蜜多少毫升?第一杯蜂蜜与水的比是:25:200。第二杯蜂蜜与水的比是:30:250。解:设应加入蜂蜜x毫升。x︰300=25︰200200x=300×25x=7500÷200x=37.5答:300毫升水中应加入蜂蜜37.5毫升。(不能组成比例)方法一:解:设合唱组有女生x人。24︰x=3︰43x=24×4x=96÷3x=32答:合唱组有女生32人。方法二:24÷3×4=32(人)答:合唱组有女生32人。方法三:24×=32(人)方法四:24÷=32(人)答:合唱组有女生32人。答:合唱组有女生32人。815815已知路程和时间,怎样求速度?速度=路程÷时间已知总价和数量,怎样求单价?单价=总价÷数量已知工作总量和工作时间,怎样求工作效率?工作效率=工作总量÷工作时间复习文具店有一种彩带,销售的数量与总价的关系如下表。数量/支总价/元13.527310.5414517.5624.5721828……绿色圃中小学教育网观察上表,回答下面的问题。(1)表中有哪两种量?(2)总价是怎样随着数量的变化而变化的?(3)相应的总价与数量的比分别是多少?比值是多少?数量/支总价/元13.527310.5414517.5624.5721828……你能发现什么?文具店有一种彩带,销售的数量与总价的关系如下表。观察上表,回答下面的问题。数量/支总价/元13.527310.5414517.5624.5721828……文具店有一种彩带,销售的数量与总价的关系如下表。(1)表中有哪两种量?表中有数量和总价两种量。观察上表,回答下面的问题。数量/支总价/元13.527310.5414517.5624.5721828……文具店有一种彩带,销售的数量与总价的关系如下表。(2)总价是怎样随着数量变化的?数量1支,总价3.5元数量2支,总价7元数量扩大,总价也随着扩大数量缩小,总价也随着缩小总价和数量是两种相关联的量...观察上表,回答下面的问题。数量/支总价/元13.527310.5414517.5624.5721828……文具店有一种彩带,销售的数量与总价的关系如下表。(3)相对应的总价和数量的比分别是多少?比值是多少?3.51=3.572=3.510.53=3.5...相对应的总价和数量的比的比值是一定的总价与数量是两种相关联的量,总价是随着数量的变化而变化的,而且总价与相应数量的比值总是一定的。数量/支总价/元13.527310.5414517.5624.5721828……文具店有一种彩带,销售的数量与总价的关系如下表。单价…27例如:==3.513.5310.5==比值3.5,实际就是彩带的单价。用式子表它们的关系就是:总价数量=数量/支总价/元13.527310.5414517.5624.5721828……文具店有一种彩带,销售的数量与总价的关系如下表。(一定)总价=单价数量像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定(商一定),这两种量就叫做成正比例的量,它们的关系叫做正比例关系。数量/支总价/元13.527310.5414517.5624.5721828……文具店有一种彩带,销售的数量与总价的关系如下表。一列火车行驶的时间和所行的路程如下表。时间(时)12345678...路程(千米)90180270360450540630720...观察上表,回答下面的问题:(1)表中有哪两种量?表中有时间和路程两种量。一列火车行驶的时间和所行的路程如下表。时间(时)12345678...路程(千米)90180270360450540630720...观察上表,回答下面的问题:(2)路程是怎样随着时间变化的?时间1小时,路程是90千米时间2小时,路程是180千米...时间扩大,路程也随着扩大时间缩小,路程也随着缩小路程和时间是两种相关联的量一列火车行驶的时间和所行的路程如下表。时间(时)12345678...路程(千米)90180270360450540630720...观察上表,回答下面的问题:(3)相对应的路程和时间的比分别是多少?比值是多少?901=901802=902703=90...相对应的路程和时间的比的比值是一定的时间和路程是两种什么样的量?两种相关联的量。为什么?路程随着时间的变化而变化。怎样变化?时间扩大,路程随着扩大;时间缩小,路程随着缩小。扩大缩小的规律是什么?路程和时间的比的比值是一定的。(商)一列火车行驶的时间和所行的路程如下表。时间(时)12345678...路程(千米)90180270360450540630720...时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值是一定。你是怎么理解正比例关系的?成正比例关系的三要素:第一、两种相关联的量。第二、其中一个量增加,另一个量也随着增加;一个量减少,另一