龙文教育——二次函数考点分析•二次函数是初等函数中的重要函数,在解决各类数学问题和实际问题中有着广泛的应用,是江苏中考热点之一。•二次函数主要考查表达式、顶点坐标、开囗方向、对称轴、最大(小)值、用二次函数模型解决生活实际问题。•其中顶点坐标、开囗方向、对称轴、最大(小)值、图象与坐标轴的交点等主要以填空题、选择题出现。•利用二次函数解决生活实际问题以及二次函数与几何知识结合的综合题以解答题形式出现:一类是二次图象及性质的纯数学问题,一类是利用二次函数性质结合其它知识解决实际问题的题目,二次函数知识导航•1、二次函数的定义•2、二次函数的图像及性质•3、求解析式的三种方法•4、a,b,c及相关符号的确定•5、抛物线的平移•6、二次函数与一元二次方程的关系•7、二次函数的应用题•8、二次函数的综合运用本次复习知识点1——51、二次函数的定义•定义:y=ax²+bx+c(a、b、c是常数,a≠0)•定义要点:①a≠0②最高次数为2•③代数式一定是整式•练习:1、y=-x²,y=2x²-2/x,y=100-5x²,•y=3x²-2x+5,其中是二次函数的有个。例1:当m_______时,函数y=(m+1)χ-2χ+1是二次函数?12m3=12、二次函数的图像及性质抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a0)y=ax2+bx+c(a0)由a,b和c的符号确定由a,b和c的符号确定a0,开口向上a0,开口向下在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.abacab44,22abacab44,22abx2直线abx2直线abacyabx44,22最小值为时当abacyabx44,22最大值为时当xy0xy0例2:已知二次函数y=—x2+x-—(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求ΔMAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大(小)值,这个最大(小)值是多少?(6)x为何值时,y0?x为何值时,y0?1232例2:已知二次函数y=—x2+x-—(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求ΔMAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大(小)值,这个最大(小)值是多少?(6)x为何值时,y0?x为何值时,y0?1232解:(1)∵a=—0∴抛物线的开口向上∵y=—(x2+2x+1)-2=—(x+1)2-2∴对称轴x=-1,顶点坐标M(-1,-2)121212例2:已知二次函数y=—x2+x-—(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求ΔMAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大(小)值,这个最大(小)值是多少?(6)x为何值时,y0?x为何值时,y0?1232解:(2)由x=0,得y=--—抛物线与y轴的交点C(0,--—)由y=0,得—x2+x-—=0x1=-3x2=1与x轴交点A(-3,0)B(1,0)32323212例2:已知二次函数y=—x2+x-—(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求ΔMAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大(小)值,这个最大(小)值是多少?(6)x为何值时,y0?x为何值时,y0?1232解0xy(3)④连线①画对称轴x=-1②确定顶点•(-1,-2)••(0,-–)③确定与坐标轴的交点及对称点••(-3,0)(1,0)32例2:已知二次函数y=—x2+x-—(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求ΔMAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大(小)值,这个最大(小)值是多少?(6)x为何值时,y0?x为何值时,y0?1232解0•M(-1,-2)••C(0,-–)••A(-3,0)B(1,0)32yxD:(4)由对称性可知MA=MB=√22+22=2√2AB=|x1-x2|=4∴ΔMAB的周长=2MA+AB=2√2×2+4=4√2+4ΔMAB的面积=—AB×MD=—×4×2=41212例2:已知二次函数y=—x2+x-—(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求ΔMAB的周长及面积。(5)x为何值时,y随x的增大而减小,x为何值时,y有最大(小)值,这个最大(小)值是多少?(6)x为何值时,y0?x为何值时,y0?1232解解0xx=-1••(0,-–)••(-3,0)(1,0)32:(5)•(-1,-2)当x=-1时,y有最小值为y最小值=-2当x<-1时,y随x的增大而减小;例2:已知二次函数y=—x2+x-—(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求ΔMAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大(小)值,这个最大(小)值是多少?(6)x为何值时,y0?x为何值时,y0?1232解:0•(-1,-2)••(0,-–)••(-3,0)(1,0)32yx由图象可知(6)当x-3或x1时,y0当-3x1时,y0返回2.顶点式:已知抛物线顶点坐标(h,k),通常设抛物线解析式为_______________求出表达式后化为一般形式.3.交点式:已知抛物线与x轴的两个交点(x1,0)、(x2,0),通常设解析式为_____________求出表达式后化为一般形式.1.一般式:已知抛物线上的三点,通常设解析式为________________y=ax2+bx+c(a≠0)y=a(x-h)2+k(a≠0)y=a(x-x1)(x-x2)(a≠0)3、求抛物线解析式的三种方法及时巩固:求二次函数的解析式。(1)、图象经过(0,0),(1,-2),(2,3)三点;(2)、图象的顶点(2,3),且经过点(3,1);(3)、图象经过(0,0),(12,0),且最高点的纵坐标是3。例3:已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1∴顶点坐标为(1,2)∴设二次函数的解析式为y=a(x-1)2+2又∵图象经过点(3,-6)∴-6=a(3-1)2+2∴a=-2∴二次函数的解析式为y=-2(x-1)2+2即:y=-2x2+4x1.2.3.-1-2-3.0.1.2.3.4.-1xy5y=2x2+1y=2x2y=2x2+1与y=2x2的图象有什么关系?4、抛物线的平移0.25.0.25.0.5.0.75.-0.25-0.5.-0.75.0.x-11-0.25.-0.5.-0.75.-1.y=3x2-1二次函数y=3x2-1图像可以由y=3x2的图象向下平移一个单位得到y=3x2这两函数的图像有什么关系?二次函数y=ax2与y=ax2+c的图象有什么关系?二次函数y=ax2+c的图象可以由y=ax2的图象当c0时向上平移c个单位得到.当c0时向下平移-c个单位得到.函数y=ax2+cy=ax2开口方向a0时,向上a0时,向下对称轴y轴y轴顶点坐标(0,0)(0,c)a0时,向上a0时,向下上加下减观察图象,回答问题(1)函数y=3(x-1)2的图象与y=3x2的图象有什么关系?23xy213xy把y=3x²的图像沿轴向右平移1个单位就得到y=3(x-1)²的图像23xy213xy213xy把y=3x²的图像沿x轴向右平移1个单位就得到y=3(x-1)²的图像把y=3x²的图像沿轴向左平移1个单位就得到y=3(x+1)²的图像函数图像开口方向顶点坐标对称轴y随x变化规律y=3x²抛物线向上(0,0)直线x=0以直线x=0为界线y=3(x-1)2抛物线向上(1,0)直线x=1以直线x=1为界线y=3(x+1)2抛物线向上(-1,0)直线x=-1以直线x=-1为界线左加右减综合:配方法例4:由二次函数y=x2的图象经过如何平移可以得到函数y=x2-5x+6的图象.y=x2-5x+641)25(2xy=x241)25(2xy习题及时巩固⑴二次函数y=2x2的图象向平移个单位可得到y=2x2-3的图象;二次函数y=2x2的图象向平移个单位可得到y=2(x-3)2的图象。⑵二次函数y=2x2的图象先向平移个单位,再向平移个单位可得到函数y=2(x+1)2+2的图象。下3右3左1上2引申:y=2(x+3)2-4y=2(x+1)2+2 个单位得到是由 平移 2)2(2xy 个单位得到是由 平移 222xy 个单位得到是由 平移 )(3122xy 个单位得到是由 平移 )(2122xy 单位得到 移是由 平5422xxy 单位得到 下平移3个向左平移2个单位再向22xyaa,bca决定开口方向:a>0时,开口向上,a<0时,开口向下︱a︱越大开口越小a、b同时决定对称轴位置:对称轴在y轴左侧时a、b同号对称轴在y轴右侧时a、b异号对称轴是y轴时b=0c决定抛物线与y轴的交点:c>0时抛物线交于y轴的正半轴c=0时抛物线过原点c<0时抛物线交于y轴的负半轴5、二次函数系数a,b,c与图象的关系△△决定抛物线与X轴的交点:△>0时抛物线与X轴有两个交点△=0时抛物线与X轴有一个交点△<0时抛物线与X轴有没有交点(左同右异)例4.二次函数y=ax²+bx+c的图象如图所示,则在下列各不等式中正确的是____________y①abc0⑥②a+b+c0⑦③a+cb④2a+b=0⑤2b-4ac0开口方向:向上a0;对称轴:在y轴右侧a、b异号,所以b0与y轴的交点:在y轴正半轴,所以c0;a+b+c:当x=1时,y=a+b+c;a-b+c:由当x=-1时,y=a-b+c,与x轴的交点:两个不同的交点,所以2b-4ac0abc0a+b+c0a+cb420abc21-10x·024cba①④⑤⑥⑦ab2∵=1,∴-b=2a∴2a+b=0xy1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b0,c0B、a0,b0,c0C、a0,b0,c0D、a0,b0,c0xy2、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b0,c=0B、a0,b0,c=0C、a0,b0,c0D、a0,b0,c=0xy3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c、△的符号为()A、a0,b=0,c0,△0B、a0,b0,c0,△=0C、a0,b=0,c0,△0D、a0,b=0,c0,△0BACooo练习及时到!熟练掌握a,b,c,△与抛物线图象的关系(上正