高考物理复习易错题研究(力学中的运动学动力学曲线运动万有引力振动和波)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1聪明的人有时也会摔倒,但决不会在同一个地方摔倒第二次!进入高三以后,许多考生的学习成绩波动都很大,如何才能使考生的成绩稳中有升呢?我们对大量高三学生的学习过程进行跟踪研究发现:每个人在学习过程中,尤其是大大小小的模拟考试中,出现的错误五花入门,“错题”呈现了“个性化”趋势。正是这些不起眼的一个小小错误导致我们考场失分,怎样避免这些错误呢?对错题进行重做重解无疑是一个良好的途径。根据对学科特点的分析,对成千上万各类型的错题进行归类,提炼出学科常易错试题的典型“错误类型”,并从错误类型的特点出发,提炼出针对某类错误的解题策略。按照学科要求划分专题,对专题内典型、易错的试题进行归类、剖析,以期考生能够“从山之石”之中获得“宝玉”。我们选取的试题皆选自高考真题和最新的模拟试题,目的是让考生对常考易错的考点进行“考场练兵”,从而使学习成绩稳步提高。一、质点的运动一、主要内容本章内容包括位移、路程、时间、时刻、平均速度、即时速度、线速度、角速度、加速度等基本概念,以及匀变速直线运动的规律、平抛运动的规律及圆周运动的规律。在学习中要注意准确理解位移、速度、加速度等基本概念,特别应该理解位移与距离(路程)、速度与速率、时间与时刻、加速度与速度及速度变化量的不同。二、基本方法本章中所涉及到的基本方法有:利用物理量间的函数关系图像研究物体的运动规律的方法,这也是形象、直观的研究物理问题的一种基本方法。这些具体方法中所包含的思想,在整个物理学研究问题中都是经常用到的。因此,在学习过程中要特别加以体会。三、错解分析在本章知识应用的过程中,初学者常犯的错误主要表现在:对要领理解不深刻,如加速度的大小与速度大小、速度变化量的大小,加速度的方向与速度的方向之间常混淆不清;对位移、速度、加速度这些矢量运算过程中正、负号的使用出现混乱:在未对物体运动(特别是物体做减速运动)过程进行准确分析的情况下,盲目地套公式进行运算等。例1、经检测汽车A的制动性能:以标准速度20m/s在平直公路上行驶时,制动后40s停下来。现A在平直公路上以20m/s的速度行驶发现前方180m处有一货车B以6m/s的速度同向匀速行驶,司机立即制动,能否发生撞车事故?【错解分析】错解:设汽车A制动后40s的位移为s1,货车B在这段时S2=v2t=6×40=240(m)两车位移差为400-240=160(m)因为两车刚开始相距180m>160m所以两车不相撞。2这是典型的追击问题。关键是要弄清不相撞的条件。汽车A与货车B同速时,两车位移差和初始时刻两车距离关系是判断两车能否相撞的依据。当两车同速时,两车位移差大于初始时刻的距离时,两车相撞;小于、等于时,则不相撞。而错解中的判据条件错误导致错解。【正确解答】如图1-8汽车A以v0=20m/s的初速做匀减速直线运动经40s停下来。据加速度公式可求出a=-0.5m/s2当A车减为与B车同速时是A车逼近B车距离最多的时刻,这时若能超过B车则相撞,反之则不能相撞。△S=364-168=196>180(m)所以两车相撞。【小结】分析追击问题应把两物体的位置关系图画好。如图1—8,通过此图理解物理情景。本题也可以借图像帮助理解图1-9中。阴影区是A车比B车多通过的最多距离,这段距离若能大于两车初始时刻的距离则两车必相撞。小于、等于则不相撞。从图中也可以看出A车速度成为零时,不是A车比B车多走距离最多的时刻,因此不能作为临界条件分析。例2.从同一地点同时开始沿同一方向做直线运动的两个物体A、B的速度图象如图所示。在0—t0时间内,下列说法中正确的是()A.A、B两个物体的加速度大小都在不断减小B.A物体的加速度不断增大,B物体的加速度不断减小C.A、B物体的位移都不断增大D.A、B两个物体的平均速度大小都大于12()2vv【错误】漏选C,认为物体B的位移在减小。【解析】由图象可看出,A、B两物体的v-t图线的斜率都在减小,即加速度减小;且图线所包围的面积都在t轴上方,则位移均在增加;在0~t时间内,A物体的位移大于初末速度相同的匀加速运动的位移,其Avv,B物体的位移小于相同速度变化的匀加速运动的位移,Bvv所以选(BC)例3.空间探测器从某一星球表面竖直升空。已知探测器质量为1v2v0tvt0AB31500Kg,发动机推动力为恒力。探测器升空后发动机因故障突然关闭,如图是探测器从升空到落回星球表面的速度随时间变化的图线,则由图象可判断该探测器在星球表面达到的最大高度Hm为多少?发动机的推动力F为多少?【错误】认为8s对应的是最大高度,∴mmHm1602840【解析】由图线可知,探测器能达到的最大高度即是图线所包围的面积24404802mHmm,星球表面的重力加速度2240/2.5/16gmsms,Fmag,而25/vamst,∴11250FmagN。例4.图A是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波冲信号,根据发出和接收到的信号间的时间差,测出被测物体的速度。图B中p1、、p2是测速仪发出的超声波信号,n1、n2是p1、p2由汽车反射回来的信号。设测速仪匀速扫描,p1、p2之间的时间间隔Δt=1.0s,超声波在空气中传播的速度是v=340m/s,若汽车是匀速行驶的,则根据图B可知,汽车在接收到p1、p2两个信号之间的时间内前进的距离是,汽车的速度是m/s。图A【错误】不能在大脑中直接形成测速仪发射和接受超声波以及两个超声波在传播过程中量值关系形象的物理图象。【解析】B图上的标尺每小格代表的时间是130s,P1信号发射时收到信号的时间间隔1120.430tss,汽车距离为11682vtSm,P2信号发射时收到信号的时间间隔290.330tss,汽车此时的距离为22512vtSm,∴P1、P2两个信号之间的时间内前进的距离是17m;汽车的速度是17.9m/s。二、牛顿运动定律(静力学、动力学)一、主要内容本章内容包括力的概念及其计算方法,重力、弹力、摩擦力的概念及其计算,牛顿运动定律,物体的平衡,失重和超重等概念和规律。其中重点内容重力、弹力和摩擦力在牛顿第二定律中的应用,这其中要求学生要能够建立起正确的“运动和力的关系”。因此,深刻理解牛顿第一定律,则是本章中运用牛顿第二定律解决具体的物理问题的基础。二、基本方法图B4本章中所涉及到的基本方法有:力的分解与合成的平行四边形法则,这是所有矢量进行加、减法运算过程的通用法则;运用牛顿第二定律解决具体实际问题时,常需要将某一个物体从众多其他物体中隔离出来进行受力分析的“隔离法”,隔离法是分析物体受力情况的基础,而对物体的受力情况进行分析又是应用牛顿第二定律的基础。因此,这种从复杂的对象中隔离出某一孤立的物体进行研究的方法,在本章中便显得十分重要。三、错解分析在本章知识应用的过程中,初学者常犯的错误主要表现在:对物体受力情况不能进行正确的分析,其原因通常出现在对弹力和摩擦力的分析与计算方面,特别是对摩擦力(尤其是对静摩擦力)的分析;对运动和力的关系不能准确地把握,如在运用牛顿第二定律和运动学公式解决问题时,常表现出用矢量公式计算时出现正、负号的错误,其本质原因就是对运动和力的关系没能正确掌握,误以为物体受到什么方向的合外力,则物体就向那个方向运动。例1、如图2-14物体静止在斜面上,现用水平外力F推物体,在外力F由零逐渐增加的过程中,物体始终保持静止,物体所受摩擦力怎样变化?【错解分析】错解一:以斜面上的物体为研究对象,物体受力如图2-15,物体受重力mg,推力F,支持力N,静摩擦力f,由于推力F水平向右,所以物体有向上运动的趋势,摩擦力f的方向沿斜面向下。根据牛顿第二定律列方程f+mgsinθ=Fcosθ①N-Fsinθ-mgcosθ=0②由式①可知,F增加f也增加。所以在变化过程中摩擦力是增加的。错解二:有一些同学认为摩擦力的方向沿斜面向上,则有F增加摩擦力减少。上述错解的原因是对静摩擦力认识不清,因此不能分析出在外力变化过程中摩擦力的变化。【正确解答】本题的关键在确定摩擦力方向。由于外力的变化物体在斜面上的运动趋势有所变化,如图2-15,当外力较小时(Fcosθ<mgsinθ)物体有向下的运动趋势,摩擦力的方向沿斜面向上。F增加,f减少。与错解二的情况相同。如图2-16,当外力较大时(Fcosθ>mgsinθ)物体有向上的运动趋势,摩擦力的方向沿斜面向下,外力增加,摩擦力增加。当Fcosθ=mgsinθ时,摩擦力为零。所以在外力由零逐渐增加的过程中,摩擦力的变化是先减小后增加。【小结】若斜面上物体沿斜面下滑,质量为m,物体与斜面间的摩擦因数为μ,我们可以考虑两个问题巩固前面的分析方法。(1)F为怎样的值时,物体会保持静止。(2)F为怎样的值时,物体从静止开始沿斜面以加速度a运动。受前面问题的启发,我们可以想到F的值应是一个范围。首先以物体为研究对象,当F较小时,如图2-15物体受重力mg、支持力N、斜向上的摩擦力f和F。物体刚好静止时,应是F的边界值,此时的摩擦力为最大静摩擦力,可近似看成f静=μN(最大静摩擦力)如图建立坐标,据牛顿第二定律列方程5当F从此值开始增加时,静摩擦力方向开始仍然斜向上,但大小减小,当F增加到FCOSθ=mgsinθ时,即F=mg·tgθ时,F再增加,摩擦力方向改为斜向下,仍可以根据受力分析图2-16列出方程随着F增加,静摩擦力增加,F最大值对应斜向下的最大静摩擦力。要使物体静止F的值应为关于第二个问题提醒读者注意题中并未提出以加速度a向上还是向下运动,应考虑两解,此处不详解此,给出答案供参考。例2、如图2-17,m和M保持相对静止,一起沿倾角为θ的光滑斜面下滑,则M和m间的摩擦力大小是多少?【错解分析】错解:以m为研究对象,如图2-18物体受重力mg、支持力N、摩擦力f,如图建立坐标有再以m+M为研究对象分析受力,如图2-19,(m+M)g·sinθ=(M+m)a③据式①,②,③解得f=0所以m与M间无摩擦力。6造成错解主要是没有好的解题习惯,只是盲目的模仿,似乎解题步骤不少,但思维没有跟上。要分析摩擦力就要找接触面,摩擦力方向一定与接触面相切,这一步是堵住错误的起点。犯以上错误的客观原因是思维定势,一见斜面摩擦力就沿斜面方向。归结还是对物理过程分析不清。【正确解答】因为m和M保持相对静止,所以可以将(m+M)整体视为研究对象。受力,如图2-19,受重力(M十m)g、支持力N′如图建立坐标,根据牛顿第二定律列方程x:(M+m)gsinθ=(M+m)a①解得a=gsinθ沿斜面向下。因为要求m和M间的相互作用力,再以m为研究对象,受力如图2-20。根据牛顿第二定律列方程因为m,M的加速度是沿斜面方向。需将其分解为水平方向和竖直方向如图2-21。由式②,③,④,⑤解得f=mgsinθ·cosθ方向沿水平方向m受向左的摩擦力,M受向右的摩擦力。【小结】此题可以视为连接件问题。连接件问题对在解题过程中选取研究对象很重要。有时以整体为研究对象,有时以单个物体为研究对象。整体作为研究对象可以将不知道的相互作用力去掉,单个物体作研究对象主要解决相互作用力。单个物体的选取应以它接触的物体最少为最好。如m只和M接触,而M和m还和斜面接触。另外需指出的是,在应用牛顿第二定律解题时,有时需要分解力,有时需要分解加速度,具体情况分析,不要形成只分解力的认识。例3、如图2-22质量为M,倾角为α的楔形物A放在水平地面上。质量为m的B物体从楔形物的光滑斜面上由静止释放,在B物体加速下滑过程中,A物体保持静止。地面受到的压力多大?【错解分析】错解:以A,B整体为研究对象。受力如图2-23,因为A物体静止,所以N=G=(M+m)g。由于A,B的加速度不同,所以不能将二者视为同一物体。忽视了这一点就会造成错解。【正确解答】分别以A,B物体为研究对象。A,B物体受力分别如图2-24a,2-24b。根据牛顿第二定律列运动方程,A物体静止,加速度为零。x:Nlsinα-f=0①y:N-Mg-Nlcosα=

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功