问题?dxxex解决思路利用两个函数乘积的求导法则.设函数)(xuu和)(xvv具有连续导数,,vuvuuv,vuuvvu,dxvuuvdxvu.duvuvudv分部积分公式一、基本内容例1求积分.cosxdxx解(一)令,cosxudvdxxdx221xdxxcosxdxxxxsin2cos222显然,选择不当,积分更难进行.vu,解(二)令,xudvxdxdxsincosxdxxcosxxdsinxdxxxsinsin.cossinCxxx例2求积分.2dxexx解,2xu,dvdedxexxdxexx2dxxeexxx22.)(22Cexeexxxx(再次使用分部积分法),xudvdxex总结若被积函数是幂函数和正(余)弦函数或幂函数和指数函数的乘积,就考虑设幂函数为,使其降幂一次(假定幂指数是正整数)u例3求积分.arctanxdxx解令,arctanxudvxdxdx22xdxxarctan)(arctan2arctan222xdxxxdxxxxx222112arctan2dxxxx)111(21arctan222.)arctan(21arctan22Cxxxx例4求积分.ln3xdxx解,lnxu,443dvxddxxxdxxln3dxxxx3441ln41.161ln4144Cxxx总结若被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就考虑设对数函数或反三角函数为.u例5求积分.)sin(lndxx解dxx)sin(ln)][sin(ln)sin(lnxxdxxdxxxxxx1)cos(ln)sin(ln)][cos(ln)cos(ln)sin(lnxxdxxxxdxxxxx)sin(ln)]cos(ln)[sin(lndxx)sin(ln.)]cos(ln)[sin(ln2Cxxx例6求积分.sinxdxex解xdxexsinxxdesin)(sinsinxdexexxxdxexexxcossinxxxdexecossin)coscos(sinxdexexexxxxdxexxexxsin)cos(sinxdxexsin.)cos(sin2Cxxex注意循环形式例7求积分.1arctan2dxxxx解,1122xxxdxxxx21arctan21arctanxxd)(arctan1arctan122xdxxxdxxxxx222111arctan1dxxxx2211arctan1令txtandxx211tdtt22sectan11tdtsecCtt)tanln(secCxx)1ln(2dxxxx21arctanxxarctan12.)1ln(2Cxx例8已知)(xf的一个原函数是2xe,求dxxfx)(.解dxxfx)()(xxdf,)()(dxxfxxf,)(2Cedxxfx),()(xfdxxf两边同时对求导,得x,2)(2xxexfdxxfx)(dxxfxxf)()(222xex.2Cex合理选择,正确使用分部积分公式vu,dxvuuvdxvu二、小结思考题在接连几次应用分部积分公式时,应注意什么?思考题解答注意前后几次所选的应为同类型函数.u例xdxexcos第一次时若选xucos1xdxexcosdxxexexxsincos第二次时仍应选xusin2一、填空题:1、xdxxsin________________;2、xdxarcsin_______________;3、计算xdxxln2,u可设_____,dv________;4、计算xdxexcos,u可设____,dv________;5、计算xdxxarctan2,u可设____,dv______;6、计算dxxex,u可设______,dv__________.二、求下列不定积分:1、dxxx2cos22;2、dxxx23)(ln;练习题3、nxdxeaxcos;4、dxex3;5、dxx)cos(ln;6、dxxxex232arctan)1(.三、已知xxsin是)(xf的原函数,求dxxxf)('.四、设CxFdxxf)()(,)(xf可微,且)(xf的反函数)(1xf存在,则CxfFxxfdxxf)()()(111.一、1、Cxxxsincos;2、Cxxx21arcsin;3、dxxx2,ln;4、,xexdxcos;5、dxxx2,arctan;6、dxexx,.二、1、Cxxxxxxsincossin21623;2、Cxxxx]6ln6)(ln3)[(ln123;3、Cnxnnxanaeax)sincos(224、Cxxex)22(33323;练习题答案5、Cxxx)]sin(ln)[cos(ln2;6、Cexxxarctan2121;7、Cexexexxxx22.三、Cxxxsin2cos.