排列组合讲义

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1排列组合方法篇一、两个原理及区别二、排列数公式三、组合数公式四、排列数与组合数的关系五、二项式定理公式:六、排列组合应用排列组合解法特殊元素优先排;合理分类与分步;先选后排解混合;正难则反用转化;相邻问题来捆绑;间隔插空处理法;定序需要用除法;分排问题直接法;集团问题先整体;有的问题选模型。○1排列数公式mnA=)1()1(mnnn=!!)(mnn.(n,m∈N*,且mn).注:规定1!0.○2排列恒等式(1)11mmnnAnA;(2)11mmmnnnAAmA.○3会推以下恒等式(1)1(1)mmnnAnmA;(2)1mmnnnAAnm;(3)11nnnnnnnAAA;(4)1!22!33!!(1)!1nnn.○1组合数公式mnC=mnmmAA=mmnnn21)1()1(=!!!)(mnmn(n∈N*,mN,且mn).○2组合数的两个性质(1)mnC=mnnC;(2)mnC+1mnC=mnC1.注:规定10nC.1.分类计数原理(加法原理)12nNmmm2.分步计数原理(乘法原理)12nNmmmmmnnAmC!.(1)0111()......nnnknkknnnnnnabCaCabCabCb*()nN(2)1knkkknTCab(3)nrrnC0=n2(4)13502412nnnnnnnCCCCCC.解决排列组合一般思路:1.审题要清2.分步还是分类3.排列还是组合4.牢记右侧方法2常见题型归类及决策:一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.位置分析法和元素分析法2、有7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略1.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.乙甲丁丙2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为。三.不相邻问题插空策略1.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略1.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法2.10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端定序问题可以用倍缩法(元素),还可转化为占位插(位置)空模型处理C14A34C13位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.3五.重排问题求幂策略1.把6名实习生分配到7个车间实习,共有多少种不同的分法2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为3、某8层大楼一楼电梯上来8名乘客,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略1.8人围桌而坐,共有多少种坐法?HFDCAABCDEABEGHGF2.6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略1.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法前排后排八.排列组合混合问题先选后排策略1.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.2.一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有种允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为nm种一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有1mnAn一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?4九.小集团问题先整体后局部策略1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹在1,5两个奇数之间,这样的五位数有多少个?2.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为3.5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有种十.元素相同问题隔板策略1.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?一班二班三班四班五班六班七班2.10个相同的球装5个盒中,每盒至少1个,有多少装法?3.100xyzw求这个方程组的自然数解的组数十一.正难则反总体淘汰策略1.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和偶数,不同的取法有多少种?2.我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略1.6本不同的书平均分成3堆,每堆2本共有多少分法?2、将13个球队分成3组,一组5个队,其它两组4个队,有多少分法?3、10名学生分成3组,其中一组4人,另两组3人,但正副班长不能分在同一组,有多少种不同的分组方法3.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______小集团排列问题中,先整体后局部,再结合其它策略进行处理。将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为11mnC有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以nnA(n为均分的组数)避免重复计数。5十三.合理分类与分步策略1.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法2.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有3.3成人2小孩乘船游玩,1号船最多乘3人,2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船,这3人共有多少乘船方法.十四.构造模型策略1.马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?2.某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?十五.实际操作穷举策略1.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法?5343号盒4号盒5号盒2.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种?3.给图中区域涂色,要求相邻区域不同色,现有4种可选颜色,则不同的着色方法有种54321解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果6十六.分解与合成策略1.30030能被多少个不同的偶数整除2.正方体的8个顶点可连成多少对异面直线十七.化归策略1.25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?2.某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?BA十八.数字排序问题查字典策略1.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?2.用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是十九.树图策略1.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有______10N2.分别编有1,2,3,4,5号码的人与椅,其中i号人不坐i号椅(54321,,,,i)的不同坐法有多少种?分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案,每个比较复杂的问题都要用到这种解题策略处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数。对于条件比较复杂的排列组合问题,不易用公式进行运算,树图会收到意想不到的结果7二十.复杂分类问题表格策略1.有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法二十一:住店法策略解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.1.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有.小结排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证。只有对基本的解题策略熟练掌握。根据它们的条件,我们就可以选取不同的技巧来解决问题.对于一些比较复杂的问题,我们可以将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通。一些复杂的分类选取题,要满足的条件比较多,无从入手,经常出现重复遗漏的情况,用表格法,则分类明确,能保证题中须满足的条件,能达到好的效果.

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功