排列组合问题经典题型

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共9页排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,ABCDE五人并排站成一排,如果,AB必须相邻且B在A的右边,则不同的排法有()A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种例3.已知集合{1,2,3,,19,20}A,集合1234{,,,}Baaaa,且BA,若||1(,1,2,3,4)ijaaij,则满足条件的集合B有多少个?3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例4.(1)A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,AB可以不相邻)那么不同的排法有()A、24种B、60种C、90种D、120种(2)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种B、300种C、464种D、600种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例5.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例6.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是()A、1260种B、2025种C、2520种D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284CCC种B、44412843CCC种C、4431283CCA种D、444128433CCCA种6.全员分配问题分组法:例7.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种7.名额分配问题隔板法:例8:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?第2页共9页例9.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?8.限制条件的分配问题分类法:例10.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜四项工作,则不同安排方案的种数是A.152B.126C.90D.549.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。例11(1)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(2)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?例12.电子表10点20分08秒时,显示的数字是10:20:08,那么,从8点到10点内,电子表6个数码均不相同的情况有多少种?10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()nABnAnBnAB例13.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。例14.现1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。例15.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()A、36种B、120种C、720种D、1440种(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?13.“至少”“至多”问题用间接排除法或分类法:例16.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有()A、140种B、80种C、70种D、35种14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.例17.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?(2)9名乒乓球运动员,其中男5名,女4名,现在要从中选4人进行混合双打训练,有多少种不同的选法?15.几何问题:例18.(1)以正方体的顶点为顶点的四面体共有()A、70种B、64种C、58种D、52种(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有()A、150种B、147种C、144种D、141种(3)记正方体的各条棱的中点构成的集合为M,则过且仅过集合M的三个点的平面有多少个?(4)正方体8个顶点可连成多少对异面直线?第3页共9页16.圆排问题单排法:把n个不同元素放在圆周n个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而无首位、末位之分,下列n个普通排列:12323411,,,;,,,,,;,,,nnnnaaaaaaaaaaa在圆排列中只算一种,因为旋转后可以重合,故认为相同,n个元素的圆排列数有!nn种.因此可将某个元素固定展成单排,其它的1n元素全排列.例19.有5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?17.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地n个不同元素排在m个不同位置的排列数有nm种方法.例20.把6名实习生分配到7个车间实习共有多少种不同方法?19.元素个数较少的排列组合问题可以考虑枚举法:例21.某电脑用户计划使用不超过500元的资金购买单价分别60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方法有()A.5种B.6种C.7种D.8种例22.从1到100的一百个自然数中,每次取出两个数,使其和大于100,这样的取法共有多少种?20.复杂的排列组合问题也可用分解与合成法:例23.(1)30030能被多少个不同偶数整除?(2)设12,,,naaa是由1,2,,n的一个排列,把排在ia的左边且比ia小的数的个数称为ia的顺序数(1,2,,)in。如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在由1,2,,8这八个数字构成的全排列中,同时满足8的顺序数为2、7的顺序数为3、5的顺序数为3的不同排列的种数为多少?21.利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理.例24.(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点最多有多少个?(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从A到B的最短路径有多少种?22.全错位排列问题公式法:全错位排列问题(贺卡问题,信封问题)记住公式即可瑞士数学家欧拉按一般情况给出了一个递推公式:用A、B、C……表示写着n位友人名字的信封,a、b、c……表示n份相应的写好的信纸。把错装的总数为记作f(n)。假设把a错装进B里了,包含着这个错误的一切错装法分两类:(1)b装入A里,这时每种错装的其余部分都与A、B、a、b无关,应有f(n-2)种错装法。(2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的)n-1个信纸b、c……装入(除B以外的)n-1个信封A、C……,显然这时装错的方法有f(n-1)种。第4页共9页总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种。a装入C,装入D……的n-2种错误之下,同样都有f(n-2)+f(n-1)种错装法,因此得到一个递推公式:f(n)=(n-1)[f(n-1)+f(n-2)],分别带入n=2、3、4等可推得结果。也可用迭代法推导出一般公式:1111()![1(1)]1!2!3!!nfnnn例25.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?例26、5位同学原来坐成一排,现让他们重新坐,则至多有两位同学坐在其原来的位置的不同的坐法是多少?23.多人传球问题:(构造递推关系)例27、12,,,naaa(3n)n个人传球,第一次由1a开始传球,可传给其他任何一个人,第二次由拿球者再传给其他任何一个人,如此继续,则第k次球仍回到1a的手中的传球方法种数是多少?24.上台阶问题:例28、10级台阶,某人可一步跨一级,也可跨两级,也可跨三级。(1)他6步就可上完台阶的方法数是多少?(2)他上完台阶的方法总数是多少?25.方程的正整数解的个数问题:(隔板法)例29.方程12nxxxk(,*knN,kn)的正整数解有多少个?有多少非负整数解个?例30.将20个完全相同的球放入编号为1,2,3,4,5的五个盒子中。(1)若要求每个盒子至少放一个球,则一共有多少种放法?(2)若每个盒子可放任意个球,则一共有多少种放法?(3)若要求每个盒子放的球的个数不小于其编号数,则一共有多少种放法?26.配对(配凑)问题:例31.5双相异的鞋共10只,现随机地取出6只,恰好能配成2双鞋的取法是多少?例32.50名选手参加乒乓球淘汰赛比赛,需要打多少场才能产生冠军?淘汰赛比赛规则是:要淘汰1名选手必须进行1场比赛;反之,每进行1场比赛则淘汰1名选手。例33.有11名翻译人员,其中5名是英语翻译人员,4名是日语翻译人员,另2人英、日语均精通。现从中选出8人组成两个翻译小组,其中4人翻译英语,另4人翻译日语,则有多少种不同的选派方式?27.染色问题:例34.把圆分成10个不相等的扇形,并且用红、黄、蓝三种颜色给扇形染色,但不允许相邻的扇形有相同的颜色,问共有多少种染色法?例35.在如图所示的六个空格里涂上红黄蓝三种颜色,每种颜色只能涂两次,要求相邻空格不同色,请问一共有多少种涂法?例36.某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,则不同的栽种方法有多少种?(变式:若要栽种5种颜色的花?)123456第5页共9页排列组合问题经典题型答案1.解析:把,AB视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424A种,答案:D.2.解析:除甲乙外,其余5个排列数为55A种,再用甲乙去插6个空位有26A种,不同的排法种数是52563600AA种,选B.3.易知1234,,,aaaa互不相等且不相邻,则有4172380C。4.解析:(1)B在A的右边与B在A的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A种,选B.(2)按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A个,1131131131343333323333,,,AAAAAAAAAAA个,合并总计300个,选B(65651()3002AA种)5.解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功