电子信息工程毕业设计论文123

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

0毕业设计(论文)题目:基于单片机的酿酒槽的温度检测与控制学生姓名朱亚梅指导教师周君芝系(部)机电工程系专业电子信息工程班级0701学号56207141提交日期2010年6月20日答辩日期2010年6月2日2010年5月1日1基于单片机的酿酒槽的温度检测与控制摘要课题针对温度控制的特点及实现准确温度控制的意义,设计了一种基于单片机的控制系统。设计内容包括硬件和软件两个部分。硬件电路以AT89S52单片机为微处理器,详细设计了温度信号采样电路,键盘及显示电路,温度控制电路,报警电路,时钟信号电路。软件部分主要对PID算法进行了数学建模和编程。PID参数整定采用的是归一参数整定法。本设计由键盘电路输入设定温度信号给单片机,温度信号采集电路采集现场温度信号给单片机,单片机根据输入与反馈信号的偏差进行PID计算,输出控制信号给温度控制电路,实现降温。显示电路实现现场温度的实时监控。工业生产中温度控制具有单向性、时滞性、大惯性和时变性的特征,要实现温度控制的快速性和准确性,对于提高产品质量具有很重要的现实意义。本课题针对温度控制的特点及实现准确温度控制的意义,设计了一种基于单片机的控制系统。设计内容包括硬件和软件两个部分。硬件电路以AT89S52单片机为微处理器,详细设计了温度信号采样电路,键盘及显示电路,温度控制电路,报警电路,时钟信号电路。软件部分主要对PID算法进行了数学建模和编程。PID参数整定采用的是归一参数整定法。本设计由键盘电路输入设定温度信号给单片机,温度信号采集电路采集现场温度信号给单片机,单片机根据输入与反馈信号的偏差进行PID计算,输出控制信号给温度控制电路,实现降温。显示电路实现现场温度的实时监控。2本系统PID参数整定在MATLAB软件下SIMULINK环境中进行了仿真,通过稳定边界法整定得到PK、DK、IK参数,最终系统无稳态误差,调节时间为30s,无超调量,各项指标均满足设计要求。本系统实现简单,硬件要求不高,且能对温度进行时实显示,具有控制过程的特殊性,本设计提出了一种基于PID算法来实现恒温控制的温度控制系统,主要是为了达到生产过程中对温度控制速度快,准确性高等特点。关键词PID算法温度控制3目录第1章绪论………………………………………………...........51.2方案的论证71.2.1方案一利用单片机实现酿酒槽的温度控制系统71.3设计方案9第2章酿酒槽温度控制系统硬件设计…………………….102.1AT89S52单片机简介102.2温度传感器132.3键盘和显示电路142.3.1行列式键盘的接口142.3.2行列式键盘的工作原理152.3.3液晶显示的接口152.3.4液晶显示的工作原理162.4温度控制电路172.5语言报警电路182.5.1ISD2560工作模式212.5.1ISD2560的连接图21第3章酿酒槽温度控制系统软件设计………………………...223.1PID调节器控制原理223.2位置式PID算法2343.3数字PID参数的整定243.4PID计算程序263.5系统相关软件设计333.5.1系统其它部件的软件设计方案333.5.2系统软件设计框图333.5.3主程序的设计343.5.4主程序的起始地址及初始化343.5.5lcd1602的显示控制343.5.6DS18B20和lcd1602的子程序设计353.5.7键盘处理子程序流程图413.5.8键盘处理子程序设计42第4章酿酒槽温度控制的系统调试…………………………...444系统调试444.2系统的软件调试444.3系统的软件与硬件调试的特点45第5章酿酒槽温度控制的设计总结…………………………..475.设计总结47致谢………………………………………………………………48参考文献…………………………………………………………505第1章绪论1.1引言电加热温度控制具有升温单向性、大惯性、大滞后性和时变性的特点。例如:其升温单向性是由于电加热的升温、保温主要是通过电阻加热;降温则通常是依靠自然冷却,当温度一旦超调,就无法用控制手段使其降温,因而很难用数字方法建立精确的模型,并确定参数。应用传统的模拟电路控制方法,由于电路复杂,器件太多,往往很难达到理想的控制效果。由于无法用精确的数学方法来建立模型并确定参数,本设计采用PID控制。目前工业自动化水平已成为衡量各行业现代化水平的一个重要标准,同时控制理论的发展也经历了经典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等;而自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构加在被控系统上,控制系统的被控量经过传感器、变送器通过输入接口送到控制器。不同的控制系统,其传感器、变送器和执行机构都不一样。比如压力控制系统要采用压力传感器,而温度控制系统要采用温度传感器。目前PID控制及其控制器或智能PID控制器已经很多,产品已在工程实际中得到广泛的应用,各大公司均开发了具有PID参数自整定功能的智能调节器,其中PID调节器参数是自动调节是通过智能化调整或自校正、自适应算法来实现,有利用PID调节控制实现压力、温度、流量、液位的控制。能实现PID控制功能的有PLC和一些PC机。传统的PID控制电路结构复杂,需配合相应的可控硅控制电路来完成功率的调控。针对它具有器件多、生产成本高、电路调试复杂的缺点,本恒温自动控制系统的设计中应用AT89S52的单片机进行数字PID运算,能充分发挥软件系统的灵活性,在必要时针对PID算法进行修正,使其更加完善,固态继电器的功率调节电路,极大地简化了执行电路,与单片机的接口也变得十分的方便,同时只需要更换不同输出功率的固态继电器,就可满足不同功率加热系统的需要由于设计的系统对温度动、静态指标要求要求不高,且允许有一定的温度偏差和允许调节的时间较长时,最流6行控制方法还是继电接触器控制系统。因此本设计采用若继电接触器控制系统。整个设计系统电路简单、调试方便、实际应用可达到理想的精度。随着集成电路技术的发展,单片微型计算机的功能也不断地增强,许多高性能的新型机种不断的涌现出来,单片机以其集成度高、功能强、体积小可靠性高、价格低和开发周期短等特点,成为自动化和各个测控领域中应用广泛的器件,在工业生产中,称为必不可少的器件,尤其是在当要求控制精度高,而成本低的社会里,往往都是采用单片机作为数字控制器取代模拟控制器。在温度控制系统中,单片机最是起到了不可替代的核心作用。而PID控制技术在现在最为成熟,控制结构简单,参数容易调整,不必求出被控对象的数学模型就可以调节,所以在恒温控制系统中通常采用PID算法。PID是比例(proportional)、积分(intergal)和微分(derivative)三者的缩写。PID调节器的三个基本参数kp(比例系数)、ki(积分系数)、kd(微分系数)是选择非常重要,它将直接影响一个控制系统的准确性。而三个环节在实际控制中的作用:1、比例调节作用:比例反映系统的偏差,系统一旦出现偏差,比例调节立即产生调节作用,用于减少偏差。比例作用大,可以加快调节,减少误差,但过大的比例使系统的稳定性下降,甚至造成系统不稳定;2、积分调节作用:是使系统消除静态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节就停止。积分调节输出为一常值,积分作用的强弱取决于积分时间常数Ti.Ti越小,积分时间就越强;反之Ti越大,积分时间就越弱。加入积分调节可使系统稳定性下降,动态响应变慢,积分作用常与另两种调节规律结合,组成PI调节或PID调节;3、微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势。因此能产生超前的控制作用。在偏差还没有形成之前,已被微分调节作用消除。因此微分调节可以改善系统的动态性能。在为时间选择合适的情况下,可以减少超调,减少调节时间。微分作用对噪音干扰有放大作用,因此过强的加微分环节,对系统抗干扰不利。此外微分反映的是变化率,而当输入没有变化时,微分作用的输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PI调节器或PID调节器。大多数温度控制系统均建立在模型上,难以满足加工工艺要求,故引入模糊控制,采用模糊PID算法,运用AT89S52单片机对电阻炉温度实现智能控制,可以解7决上述种种不足,从而实现高精度的控制。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,因此本次设计应用PID控制技术最为有效。1.2方案的论证无论是工农业生产中,还是日常生活中,对温度的检测和控制都是必不可少的,对于温度的检测通常是采用热敏电阻在通过A/D(模/数)转换得到数字信号,但由于信号的采集对整个系统的影响很大,如果采样精度不高,会使这个系统准确性下降。因此本次设计采用高精度的温度传感器:数字温度传感器DS18B20。这种数字温度传感器是DALLAS公司生产的单总线,。而对于温度控制的方法也有很多:如单片机控制、PLC控制、模拟PID调节器和数字PID调节器等等。综合各方面的意见,本设计采用单片机来实现温度的控制。1.2.1方案一利用单片机实现酿酒槽的温度控制系统利用单片机系统实现温度恒定的控制,其总体结构图如图1.1所示。系统主要包括现场温度采集、实时温度显示与报警装置和系统核心AT89S52单片机作为微处理器。数字式温度传感器单片机液晶显示键盘报警警控制电路8图1.1方案一的系统总体结构框图温度采集电路以数字量形式将现场温度传至单片机。单片机结合现场温度与用户设定的目标温度,按照已经编程固化的模糊控制算法计算出实时控制量。以此控制量控制固态继电器开通和关断,以决定温度控制电路的工作状态,使温度不超过目标值。在温度接近或达到目标值时,单片机通过采样回的温度与设置的目标温度比较做出相应的控制,使酒槽温度下降。系统运行过程中的各种状态参量均可由液晶实时显示。1.2.2方案二利用PLC实现恒温控制系统利用PLC实现对酒槽温度的控制,其控制系统采用PLC控制实现自动控制方式,来达到控制温度的恒定。智能型电偶温度表将置于被测对象中,热电偶的传感器信号与恒定温度的给定电压进行比较,构成闭环系统,生成温差电压Vt,PLC自适应恒温控制电路,根据Vt的大小计算出全通、间接导通和全断的自适应恒温控制电路,并将占空比可调的控制电平经输出隔离电路去控制可控硅门极的通断,实现自适应的恒温控制。若温度升的过快,PLC也将输出关断电平信号转换为可控硅电路相匹配的输入信号。1.2.3方案三利用模拟PID调节的恒温控制系统基于模拟PID调节的恒温控制系统由数字电路部分和模拟电路两部分组成,其控制系统的机构框图如图1.2所示。由按键设定某一温度,单片机对设定温度值进行查表计算后转换为对应的电压数字值,通过16位的数模转换器得到与之精确对应的电压信号,此电压值于热敏电阻实际测量的电压值进行比较产生一个误差信号,经过PID电路后,获得一个控制量给制冷元件构成实时闭环系统,同时实际测量的电压值并显示在液晶屏上。9图1.3方案三的系统结构框图1.3设计方案控制模块的选择,数字比较器与模拟控制器相比较,数字比较器具有以下几个优点:1、模拟调节器调节能力有限,当控制规律较为复杂时,就难以甚至无法实现。而数字控制器能实现复杂控制规律的控制。2、计算机具有分时控制能力,可实现多回路控制。3、数字控制器具有灵活性。起控制规律可灵活多样,可用一台计算机对不同的回路实现不同的控制方式,并且修改控制参数或控制方式一般只可改变控制程序即可,使用起来简单方便,可改善调节品质,提高产品的产量和质量。4、采用计算机除实现PID数字控制外,还能实现监控、数据采集、数字显示等其他功能。综合考虑,本设计控制模块采用数字

1 / 50
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功