叶中豪几何讲稿

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

•1.平行四边形ABCD(非矩形和菱形)中,CM⊥AD于M,CN⊥AB于N,NM与BD延长交于点P。求证:PC⊥AC。2.已知AF、DC是圆O的直径,E是CF延长线上一点,DE交圆O于B,直线AB、OE交于P。求证:PC是圆O的切线。3.已知:AB是圆O的直径,P是过B点的切线上任一点,过P作任意割线PCD,联结AC、AD,分别与直线OP交于E、F。求证:OE=OF。4.ABCD是圆ω的内接四边形,CP、DQ是ω的直径,过P、Q作的ω切线与直线AB交于E、F。直线EO与AC、BC交于X、Y,直线FO与AD、BD交于U、V。求证:XV=YU。(2010年俄罗斯竞赛5.已知:AB是圆O的直径,P是过B点的切线上任一点,过P作任意割线PCD,联结AC、PO交于E点。求证:∠DBE=90°6.在△ABC中,AB≠AC,I是内心,直线AI与△ABC的外接圆交于D。过D作DP⊥AD交BC于P,△ABC的B-旁切圆切AC于E,C-旁切圆切AB于F。求证:EF⊥PI。(2007年秘鲁国家队选拔考试)7.已知:直角△ABC,D是斜边AB的中点,MB⊥AB,MD交AC于N,MC延长线交AB于E。求证:∠DBN=∠BCE。(2007年第4届东南地区数学奥林匹克8.自圆内接四边形ABCD的每边端点作邻边的垂线,相邻垂线分别交于E、F、G、H。求证:E、F、G、H四点共线。9.已知ABCD是圆内接四边形,对角线AC、BD交于P点,O是外接圆心。过A、B分别作邻边AD和BC的垂线交于E点。求证:E、O、P三点共线。10.在△ABC两侧作△ABF、△ACE,使得∠BAE=∠CAF=90°,且∠ABF+∠ACE=180°。O是△ABC的外心。求证:E、O、F三点共线。11.M为AC上任一点,BM延长交圆O于P,过P作CP垂线交OM延长线于Q。求证:BA⊥AQ。12.D为△ABC外接圆上任一点,AD中垂线交AC于E,BE延长交外接圆于F,过F作CF的垂线交AD中垂线于G。求证:D、E、F、G四点共圆。13.设P是△ABC外接圆上任一点,自P分别作PA、PB、PC的垂线,与对应边BC、CA、AB或延长线交于D、E、F,则D、E、F及外心O共线14.设AB是圆O的弦,PB⊥AB,过P作圆O的割线PCD,联结AC、OP交于E。求证:EB⊥DB。15.设P是△ABC所在平面上任意一点,自P作PA、PB、PC的垂线,分别与对应边BC、CA、AB交于D、E、F,则D、E、F三点共线。16.已知D在△ABC的九点圆上,E、F分别在AB、AC边上,且∠BDF=∠CDE=90°。求证:EF过△ABC的外心O。17.已知:PB垂直于圆O的弦AB,过P作任意割线PCD,联结AC、AD与直线PO交于E、F,DE、CF分别交圆O于M、N,MN与PO延长交于Q。求证:QA是圆O的切线。18.如图,AB是圆O的任意弦,PB是切线,PCD、PST是两条任意割线,AB、AC、AD分别与PST相交于Q、E、F。求证:19.已知:PF⊥PC,PB⊥PE,延长PE、PF交△ABC外接圆于B'、C',联结B'F、C'E交于Q。求证:∠QAC=∠PAB。20.已知△ABC中,B'、C'是外接圆上B、C的对径点,直线B'C'与过A的切线交于D,过D任作直线分别交AB、AC于E、F,联结B'E、C'F交于Q点。求证:AQ⊥BC

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功