第一课件网级高三数学总复习讲义——数列概念知识清单1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。记作na,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n的项叫第n项(也叫通项)记作na;数列的一般形式:1a,2a,3a,……,na,……,简记作na。(2)通项公式的定义:如果数列}{na的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。例如,数列①的通项公式是na=n(n7,nN),数列②的通项公式是na=1n(nN)。说明:①na表示数列,na表示数列中的第n项,na=fn表示数列的通项公式;②同一个数列的通项公式的形式不一定唯一。例如,na=(1)n=1,21()1,2nkkZnk;③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,……(3)数列的函数特征与图象表示:序号:123456项:456789上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集N(或它的有限子集)的函数()fn当自变量n从1开始依次取值时对应的一系列函数值(1),(2),(3),fff……,()fn,…….通常用na来代替fn,其图象是一群孤立点。(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。(5)递推公式定义:如果已知数列na的第1项(或前几项),且任一项na与它的前一项1na(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。(6)数列{na}的前n项和nS与通项na的关系:11(1)(2)nnnSnaSSn≥课前预习1.根据数列前4项,写出它的通项公式:(1)1,3,5,7……;(2)2212,2313,2414,2515;(3)11*2,12*3,13*4,14*5。2.数列na中,已知21()3nnnanN,(1)写出10a,1na,2na;0C5C4C3C2B5B4B3B2A6A5A4A3A2C1B1A1xy第一课件网(2)2793是否是数列中的项?若是,是第几项?3.如图,一粒子在区域(,)|0,0xyxy上运动,在第一秒内它从原点运动到点1(0,1)B,接着按图中箭头所示方向在x轴、y轴及其平行方向上运动,且每秒移动一个单位长度。(1)设粒子从原点到达点nnnABC、、时,所经过的时间分别为nnna、b、c,试写出}nnna{}、{b}、{c的通相公式;(2)求粒子从原点运动到点(16,44)P时所需的时间;(3)粒子从原点开始运动,求经过2004秒后,它所处的坐标新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆。4.(1)已知数列na适合:11a,1na22nnaa,写出前五项并写出其通项公式;(2)用上面的数列na,通过等式1nnnbaa构造新数列nb,写出nb,并写出nb的前5项。5.(05广东,14)设平面内有n条直线)3(n,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(nf表示这n条直线交点的个数,则)4(f=____________;当4n时,)(nf(用n表示)。6.(2003京春理14,文15)在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察表中数据的特点,用适当的数填入表中空白(_____)内。第一课件网级高三数学总复习讲义——等差数列知识清单1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示。用递推公式表示为1(2)nnaadn或1(1)nnaadn。2、等差数列的通项公式:1(1)naand;说明:等差数列(通常可称为AP数列)的单调性:d0为递增数列,0d为常数列,0d为递减数列。3、等差中项的概念:定义:如果a,A,b成等差数列,那么A叫做a与b的等差中项。其中2abAa,A,b成等差数列2abA。4、等差数列的前n和的求和公式:11()(1)22nnnaannSnad。5、等差数列的性质:(1)在等差数列na中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列na中,相隔等距离的项组成的数列是AP,如:1a,3a,5a,7a,……;3a,8a,13a,18a,……;(3)在等差数列na中,对任意m,nN,()nmaanmd,nmaadnm()mn;(4)在等差数列na中,若m,n,p,qN且mnpq,则mnpqaaaa;说明:设数列{}na是等差数列,且公差为d,(Ⅰ)若项数为偶数,设共有2n项,则①S奇S偶nd;②1nnSaSa奇偶;(Ⅱ)若项数为奇数,设共有21n项,则①S偶S奇naa中;②1SnSn奇偶。6、数列最值(1)10a,0d时,nS有最大值;10a,0d时,nS有最小值;(2)nS最值的求法:①若已知nS,可用二次函数最值的求法(nN);②若已知na,则nS最值时n的值(nN)可如下确定100nnaa或100nnaa。课前预习1.(01天津理,2)设Sn是数列{an}的前n项和,且Sn=n2,则{an}是()A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列2.(06全国I)设na是公差为正数的等差数列,若12315aaa,12380aaa,则111213aaa()第一课件网.120B.105C.90D.753.(02京)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()A.13项B.12项C.11项D.10项4.(01全国理)设数列{an}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()A.1B.2C.4D.65.(06全国II)设Sn是等差数列{an}的前n项和,若36SS=13,则612SS=A.310B.13C.18D.196.(00全国)设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列{nSn}的前n项和,求Tn。7.(98全国)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=100.(Ⅰ)求数列{bn}的通项bn;(Ⅱ)设数列{an}的通项an=lg(1+nb1),记Sn是数列{an}的前n项和,试比较Sn与21lgbn+1的大小,并证明你的结论。8.(02上海)设{an}(n∈N*)是等差数列,Sn是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误..的是()A.d<0B.a7=0C.S9>S5D.S6与S7均为Sn的最大值9.(94全国)等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130B.170C.210D.260第一课件网级高三数学总复习讲义——等比数列知识清单1.等比数列定义一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q表示(0)q,即:1na:(0)naqq数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,21。(注意:“从第二项起”、“常数”q、等比数列的公比和项都不为零)2.等比数列通项公式为:)0(111qaqaann。说明:(1)由等比数列的通项公式可以知道:当公比1d时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若{}na为等比数列,则mnmnaqa。3.等比中项如果在ba与中间插入一个数G,使bGa,,成等比数列,那么G叫做ba与的等比中项(两个符号相同的非零实数,都有两个等比中项)。4.等比数列前n项和公式一般地,设等比数列123,,,,,naaaa的前n项和是nS123naaaa,当1q时,qqaSnn1)1(1或11nnaaqSq;当q=1时,1naSn(错位相减法)。说明:(1)nSnqa,,,1和nnSqaa,,,1各已知三个可求第四个;(2)注意求和公式中是nq,通项公式中是1nq不要混淆;(3)应用求和公式时1q,必要时应讨论1q的情况。5.等比数列的性质①等比数列任意两项间的关系:如果na是等比数列的第n项,ma是等差数列的第m项,且nm,公比为q,则有mnmnqaa;②对于等比数列na,若vumn,则vumnaaaa,也就是:23121nnnaaaaaa,如图所示:nnaanaannaaaaaa112,,,,,,12321。③若数列na是等比数列,nS是其前n项的和,*Nk,那么kS,kkSS2,kkSS23成等比数列。如下图所示:kkkkkSSSkkSSkkkaaaaaaaa3232k31221S321课前预习1.在等比数列na中,3712,2aq,则19_____.a2.23和23的等比中项为().第一课件网()1A()1B()1C()2D3.在等比数列na中,22a,545a,求8a,4.在等比数列na中,1a和10a是方程22510xx的两个根,则47aa()5()2A2()2B1()2C1()2D5.在等比数列na,已知51a,100109aa,求18a.6.(2006年辽宁卷)在等比数列na中,12a,前n项和为nS,若数列1na也是等比数列,则nS等于()A.122nB.3nC.2nD.31n7.(2006年北京卷)设4710310()22222()nfnnN,则()fn等于()A.2(81)7nB.12(81)7nC.32(81)7nD.42(81)7n8.(1996全国文,21)设等比数列{an}的前n项和为Sn,若S3+S6=2S9,求数列的公比q;9.(2005江苏3)在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=()(A)33(B)72(C)84(D)18910.(2000上海,12)在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N)成立.类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式成立。第一课件网级高三数学总复习讲义——数列通项与求和知识清单1.数列求通项与和(1)数列前n