液晶显示器全攻略作者:HermannEidenUdoSchroeder转载时间:2002年09月薄膜晶体管液晶显示器指南第一部份--平面显示器导论由于平面显示器市场的兴起,使显示器制造商回想起过去那段边际利益丰厚及市场需求强劲的时光。因为需求快速地上升、缺乏量产的投资及产品的成品率始终不高这三个因素,为液晶显示器制造商创造了一个理想的环境。顾客需要多付出一大笔的钱来买液晶显示器只为了节省桌上的空间及电力的消耗。然而这个情况却不会持续很久,因为市场方向已经转变及价位将会随着市场的机制而降低。显示器指南的第一部份将带给读者目前薄膜晶体管液晶显示器(FTF-LCD)的市场情况、价位及未来市场市场的趋势。不管你是硬件的新手或老鸟,你都可以从这篇文章中得到一些有用的信息,主题包括液晶显示器的各项功能、独特的性能及详尽的技术资料等。如果你最近有购买液晶显示器的计划,这篇文章也可提供你一些购买的诀窍。第二部份与第三部份是针对对液晶显示器技术有兴趣的读者,它们的内容包含各种最新的广视角技术、数字界面的演变(DFP及DVI)及像素大小、分辨率与屏幕最大可视范围这三者之间的关连。在往后的系列报导中我们将为你报告液晶显示器制造商的最新动态及产品的最新信息,而各种机型的报价也会依市场价格而为你随时更新。市场现状笔记本电脑的风行奠定了平面显示器发展的基础,也对桌上型的平面显示器产生了一个正面的效应。平面显示器(通常指的是薄膜晶体管液晶显示器,TFT-LCD)在欧洲与日本一直是个热门的话题。这个现象并不令人惊讶,而在1998年平面显示器的销售量也比CRT监视器低很多,所以TFT-LCD的需求是很强劲的,而且其产量也不能满足市场的需求。这代表TFT-LCD的情况是很吃紧的,使得它在PC市场上变得很稀少。但是,对LCD的市场来说却是不一样的。有几个原因可以用来解释目前LCD供货吃紧的情况:玻璃基板的缺货、供应商的产量受限制及LCD制造商不愿意将大钱投资在他们看来是很有风险的产业。目前大部分的TFT-LCD都是用在商业办公环境中,特别是那些对空间、噪音、电力消耗及健康方面特别要求的地方。以下是使TFT-LCD也能在家用市场成功的一些要素:价格必须与CRT监视器一样最小可视面积需大于15吋,其对应的分辨率应为1024X768可获得性高数字界面的标准可适合于任何应用的性能及功能兼容性制程与成品率有源矩阵薄膜晶体管的结构与制程就如同它们的工作原理一样复杂,在制程中包含了许多化学材料及非常薄的玻璃基板---在一块对角长为30吋的玻璃上,所以生产的过程中发生瑕疵的机会相当大。非常薄的晶体管被用来控制三原色(RGB)子像素(Sub-Pixel)的明亮程度以显示不同的色彩,故线宽必须被控制地相当精准。与晶圆片及集成电路制程一样,薄膜晶体管的量产也与制程成品率有关。虽然LCD厂一直对TFT的成品率做改善,但一个不变的定理是:小尺寸的液晶模块比较容易制造而且成品率较高。所以LCD厂一直在思考到底是生产大尺吋(15吋以上)的薄膜晶体管液晶显示器或者是拿来生产笔记本电脑需要的小尺吋面板模块(12.1吋)及其他小尺寸的应用哪者会比较划算。在同一块玻璃基板上,大尺寸面板能切出的片数较少,成品率也低,但单价极高;小尺寸能切出较多块的面板,成品率高,但单价较低。但在1999年第二季,不管是大尺寸或小尺寸都面临了短缺的困境,但笔记本电脑明显地有较多的产量而显示器系统厂始终处于严重缺货的状态。目前价格及未来价格趋势目前液晶显示器的价格大约为同尺寸CRT监视器的2~3倍,也就是说一个15吋的液晶屏幕(对应到17吋的CRT屏幕),价格在美金850~1300元之间;而18吋的液晶屏幕(约等于21吋的CRT屏幕)要价美金2800~3500元间。在1999年上半季,面板的价格曾在短期间内有小幅的上扬,而这是违反价格趋势的。在那时许多液晶面板制造商将售价从美金500元调升至600元,会有这样的发展是因为IT(InformationTechnology)的趋势而带动了面板的需求,造成供不应求的情形。荒谬的是,要是液晶厂没有沉重的财力负担的话,一块15吋的面板可能只需要美金80元,而理论上,液晶显示器可以比CRT显示器更便宜。除非笔记型电脑的面板供应量可以移转到液晶显示器来,不然目前的价格趋势将会一直延续下去。什么是薄膜晶体管液晶显示器?一起来了解这项技术吧!现代的显示器技术可分为阴极射线管显示器及平面显示器两种。阴极射线管装置较大且占空间,而平面显示器---顾名思义,是平面的且省空间。平面显示器技术又可分为液晶显示器、等离子显示器、发光二极管显示器和其他设备等等。在这些平面显示器中又可分为两类,一类为能主动发光的元件,另一类为需要背光源而由像素元件控制光通过状态的显示器。我们将讨论这些平面显示器--特别是针对所谓的薄膜晶体管液晶显示器(TFT-LCD),会更有意义些。而这些类型的显示器都是属于那些需要背光源通过它们的那一类。STN及DSTN(被动矩阵液晶显示器)也在使用,但现在只有在低价位应用才看得到,如笔记本电脑。图1各种不同的平面显示器。有源矩阵液晶显示器已经在市场上占有极大的优势。TFT是如何工作的?TFT也就是薄膜晶体管,是用来主动控制每一个像素光通过量的元件。由于这个原因,我们也就称它是“有源矩阵薄膜晶体管”。影像是如何产生的?其实原理很简单:让面板上的每一个独立像素都能产生你想要的色彩。为了达成这个目的,多个冷阴极灯管必须被使用来当作显示器的背光源。为了要让光通过每一个像素,面板必须被分割且制造成一个个的小门或开关来让光通过。这项技术的实现是相当复杂的且比我们上面提到的都深。液晶显示器(LCD)也就是使用液晶元件来调变光的屏幕。液晶可以改变它的分子结构,因此可以让不同程度的光量通过它本身(也可完全阻断光线)。液晶显示器理含有两片偏极片、彩色滤光片阵列及取向膜,它们可决定光通量的最大值与颜色的产生。液晶层位于两片玻璃片之间,当施以一个电压给取向层,则产生一个电场,使取向层界面的液晶朝某一个方向排列。每一个像素都由红、绿、蓝三个子像素(Subpixel)所组成,就如同显像管一样。最普遍的液晶模式为扭转向列液晶TFT(TFF-TN)。下面将解释这种结构的工作原理。目前已有许多其他的技术,将在第二部份---广视角技术中介绍。图2a.标准的TNLCD工作原理(亮)当液晶层不施任何电压降时,液晶是在它的初始状态,会把入射光的方向扭转90度,因此让背光源的入射光能够通过整个结构。图2b.标准的TNLCD工作原理(暗)当液晶层施以某一电压差,液晶会改变它的初始状态,使液晶的排列方向不扭转,而不改变光的极化方向,因此经过液晶的光会被第二层偏极片吸收而整个结构呈现不透光的状态。TFT的结构彩色滤光片是由红、绿、蓝三种颜色的滤片,有规律地制作在一块大玻璃基板上。每一个像素(点)是由三种颜色的单元或称为子像素所组成。这也代表说,假如有一块面板的分辨率为1280X1024,则它实际拥有3840X1024个晶体管及子像素。ㄧ个15.1吋的液晶显示器(分辨率为1024x768)其点距为0.0118英吋(0.3mm);而18.1吋的液晶显示器(分辨率为1280x1024)其点距为0.01英吋(0.28mm)。图4一个TFT像素。每个子像素的左上角(灰色矩形)为不透光的薄膜晶体管,彩色滤光片能产生RGB三原色。显示器的点距越小,分辨率也就越高。然而,因为显示器的可视范围有限,一旦扩展分辨率,则透光率势必降低。如一个15吋的显示器(对角长度为38cm),点距为0.0118英吋(0.297mm),当分辨率增加为1280x1024时,则每个像素的透光量减少而变得无意义。在这份文件的第四部份将会列出点距与对角线长度间的关系。是什么引起了令人不适的缩放误差?一个面板的像素位置及分辨率在制造完成后都是固定的,所以没有所谓的画面几何失真问题产生。因此,面板的最大分辨率对应到像素总数。大部分的游戏、视频及其它应用的分辨率都不会大于面板的最大分辨率。一旦信号源提供较低的分辨率时面板的视觉效果将会变得如何呢?在这个情况下,电路需要将较小的画面放大成与面板的最大分辨率一样。假如电路不能有效地进行这项工作,显示在液晶面板上的画面将严重失真与不符合人体工程学。从技术的观点来看,这并不像处理CRT时一样容易。为什么?当CRT面临这样的问题时,只要调整电子束枪的偏转电压,就可接收新的分辨率。除此之外,你也不用去考虑到电子束会同时地打在屏幕上相邻的两个点。这一点与TFTLCD的驱动方式有很大的不同:由于是主动控制每一个独立的像素,影像放大电路需要对较小的分辨率做更复杂的计算。这一点对于放大倍数为整数(例如,从800X600到1600X1200,放大倍数为2)的情况较为简单:只要将画面的高与宽都放大一倍即可,即可得到正确的放大画面。但是,从800X600放大到1024X768就没这么简单了。它的放大倍数为1.28(不是整数),所以并不是原画面的每一个像素都等量放大。显示器中的电路必须去决定哪一个像素该放大一倍而哪一个不须放大。当显示文字时,数学上的模糊误差将导致令人不舒适的效应(见下图)。为了要得到更好的效果,放大电路通常使用一个小技巧(AdvancedScaling)减低光学上的压迫性,那就是,假如画面资料不能整数倍放大时,减低某些像素的放大后的亮度将可改善画面的不舒适性。图5字母“m“的放大情况。非整数倍的放大变数将引起视觉上的失真。评估一个显示器时,你应考虑哪些参数?我们先来解释一些最重要的概念解释何谓屏幕对角长度显像管屏幕的对角可视范围总是比显像管的实际对角范围小。然而,液晶显示器则无边缘不用的区域。面板的对角范围与真正可视范围一致。例如,一个15.1吋的液晶屏幕约等于17吋CRT屏幕的可视范围。视角与CRT屏幕相比,视角仍是平面显示器一个相当不一样的地方。当背光源的入射光通过偏极片、液晶及所谓的取向膜后,输出光便具备了特定的方向特性,也就是说,大多数从屏幕射出的光具备了垂直方向。假如从一个非常斜的角度观看一个全白的画面,我们可能会看到黑色或是色彩失真。这个效应在某些场合有用,但在大部份的应用上是我们不想要的。制造商们已经花了很多时间来试图改善液晶显示器的视角特性,有数种广视角技术被提出:IPS(IN-PLANE-SWITCHING、MVA(MULTI-DOMAINVERTICALALIGNMENT)、TN+FILM。这些技术都能把液晶显示器的视角增加到160度,甚至更多,就如同CRT屏幕的视角特性一样。最大视角的定义是对比值至少能达到10:1的视角(通常有四个方向,上/下/左/右)。对比对比的定义为最大亮度值(全白)除以最小亮度值(全黑)的比值,对比值越大则此显示器越好。对比的问题不会发生在CRT屏幕因为它们的对比值通常高达500:1,以致于CRT显示器的画面品质可以与冲洗照片比美。在CRT显示器上呈现真正全黑的画面是很容易的,但对TFT-LCD来说是相当不容易的。由冷阴极射线管所构成的背光源是很难去做快速的开关动作,因此背光源始终处于点亮的状态。为了要得到全黑画面,液晶模块必须完全把由背光源而来的光完全阻挡,但在物理特性上,这些元件并无法完全达到这样的要求---总是会有一些漏光发生。制造商也一直致力于漏光现象的改善。一个人眼可以接受的对比值约为250:1亮度这是TFT-LCD少数领先CRT的地方。最大亮度通常由冷阴极射线管(背光源)来决定,TFT-LCD的亮度值一般都在200~250cd/m2。虽然技术上可以达到更高亮度,但是这并不代表亮度值越高越好,因为太高亮度的显示器有可能使观看者眼睛受伤。CRT显示器的最大亮度约为100to120cd/m2。要达到更高亮度值是很困难的,因为显像管枪须要更大的加速电压,而这样做的结果会造成较高的辐射量及降低激发磷光的生命周期等两个负面效应。像素误差这是由于有缺陷的薄膜晶体管而在屏幕上可看到小色点。由于像素晶体管不能正常工作,背光有可能永远不能穿透或是维持固定的穿透光量。假如些缺陷晶体管