1高斯——赛德尔法潮流计算潮流计算高斯——赛德尔迭代法(Gauss一Seidelmethod)是求解电力系统潮流的方法。潮流计算高斯——赛德尔迭代法又分导纳矩阵迭代法和阻抗矩阵迭代法两种。前者是以节点导纳矩阵为基础建立的赛德尔迭代格式;后者是以节点阻扰矩阵为基础建立的赛德尔迭代格式。高斯——赛德尔迭代法这是数学上求解线性或非线性方程组的一种常用的迭代方法。本实验通过对电力网数学模型形成的计算机程序的编制与调试,获得形成电力网数学模型:高斯---赛德尔法的计算机程序,使数学模型能够由计算机自行形成,即根据已知的电力网的接线图及各支路参数由计算程序运行形成该电力网的节点导纳矩阵和各节点电压、功率。通过实验教学加深学生对高斯---赛德尔法概念的理解,学会运用数学知识建立电力系统的数学模型,掌握数学模型的形成过程及其特点,熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。高斯---赛德尔法潮流计算框图N开始输入数据,定义数组给定PQ节点电压初值给定PV节点电压实部(或虚部)置迭代计数b=0计算PQ节点电压实部和虚部先计算PV节点无功功率再用其计算PV节点电压实部和虚部计算平衡节点的有功和无功判断所有|Δ错误!未找到引用源。|是否0.000001b=b+1求错误!未找到引用源。=错误!未找到引用源。+错误!未找到引用源。2Y[1]系统节点的分类根据给定的控制变量和状态变量的不同分类如下①P、Q节点(负荷节点),给定Pi、Qi求Vi、Si,所求数量最多;②负荷节点,变电站节点(联络节点、浮游节点),给定PGi、QGi的发电机节点,给定QGi的无功电源节点;③PV节点(调节节点、电压控制节点),给定Pi、Qi求Qn、Sn,所求数量少,可以无有功储备的发电机节点和可调节的无功电源节点;④平衡节点(松弛节点、参考节点(基准相角)、S节点、VS节点、缓冲节点),给定Vi,δi=0,求Pn、Qn(Vs、δs、Ps、Qs)。[2]潮流计算的数学模型1)线性的节点电压方程YV=I根据S=V可得非线性的节点电压方程(为I的共轭)YV=I==节点功率与节点电流的关系:2)在国外,对于复数变量不打点,其模要加绝对值符号;在国内,对于复数变量,在S、V、I上要打点,Y、Z上不打点,其模不加绝对值符号。3)式2—5对于发电机Pi、Qi为正,对负荷来说Pi、Qi为负4)展开YV=I得上式代入式2—5得n维的非线性复数电压方程组式2—6该式为潮流计算的基本方程[3]高斯—赛德尔法潮流计算1)高斯法潮流计算①将式2—6展开成电压方程式2—7假设系统节点数是n,PQ节点数为m,m+1及之后的节点是PV节点,第n个节点是平衡节点。结果输出结束3展开式2—7得高斯法潮流计算的基本方程式2—8②考虑到i=1时matlab中for语句的使用可写成③由于平衡节点的电压和相角给定,不用计算,只要计算i=1—n-1节点的电压,但平衡节点的参数和变量要用于其他节点的电压计算.式2—8的计算过程中有i=1、2、···n-1④特点:在计算i节点的k+1次电压时,所用的i节点前后(包括i节点)的电压都是k次迭代的结果。2)高斯—赛德尔法潮流计算①在高斯法潮流计算中引入赛德尔法迭代方式即为高斯—赛德尔法潮流计算②对应式2—8的高斯—赛德尔法潮流计算的方程为式2—9在式2—9的计算中有③特点:在计算i节点的k+1次电压时,1~i-1节点的电压用的是k+1次时的电压,而i~n-1节点的电压用的是k次时的电压,即在迭代过程中每个被求的电压新值立即被带入到下一个电压新值的计算中。3)基于导纳矩阵的直角坐标高斯—赛德尔法潮流计算①设展开式2—6并将实、虚部分列式2—10式2—11②令式2—12注:、中不包括j=i的参数和变量;、中分别有k+1次和k次的变量;4在、中没有单独列出。()③④将2—12代入式2—10和2—11得式2—13式2—14⑤将式2—9展开,实、虚部分列,再将式2—12代入,得节点电压的实部、虚部式2—15式2—16⑥对P、V节点,根据常数式2—174)部分求解方程对于P、Q节点:用式2—15求,用式2—16求对于P、V节点:用式2—14求用式2—15求,式2—16求5)为了加速收敛,引入加速因子α,α=1~1.8之间,复数电压:式2—186)实数模型:式2—19)式2—20、是式2—15~式2—17计算出的值,、是考虑到α修正后的值,、5是上一次用于迭代的实际值(不一定是式2—15~式2—17计算出的值)7)三种加速过程①每次求出的、立即用于求解下一个电压新值;②每次求出的、同时立即用α进行修正,得到的、同时用于求解下一个电压新值;③每次求出的、分别用α进行修正,得到的、分别用于求解下一个电压新值。注:三种加速过程中,速度又快到慢依次为③②①。8)收敛判据:复数模型:实数模型:,9)三种收敛判据情况:①用前后两次经α修正后的电压值;②用前后两次式2—15~式2—17计算出来的值;③前一次用α修正的值,后一次用式2—15~式2—17计算出的值。10)高斯—赛德尔法是用前后两次迭代的最大电压误差作收敛判据,ε取10-5~10-6,牛顿法是用最大功率误差为收敛判据,ε取10-3~10-5,所以后者为好。[4]编程程序步骤如下第一步:设定初值0maxV,1i定义Z矩阵,s设定循环次数100k第二步:用一判据(0)2,(iZ)先求PQ节点用2-15式求)1(kie,再代入2-16替代)(kie求)1(kif。则);(;;)1()1()1()()1()1()1()1()1(kikikikikikikikikefarctgVVVjfeViif;;)1(maxmax)1(kikiVVVV根据收敛判据5max10V输出代求量,即if6;)7,(;)6,(10)1()1(6maxkikiiZViZV第三步:(0)!2,(iZ)求PV节点用2-14求iQ再用2-16求)1(kif,将其代入2-17,求)1(kie,则);/(;;)1()1()1()()1()1()1()1()1(kikikikikikikikikefarctgVVVjfeViif;)1(maxmax)1(kikiVVVV根据收敛判据6max10V输出代求量,即if;)7,(;)3,(10)1()1(6maxkikiiZQiZV第四步:求平衡节点n利用式2-13和2-14式求iP和iQ,然后输出,即;)3,(;)2,(iiQiZPiZ最后输出Z矩阵试验题目:用形成Y阵的五节点系统,假定节点1、2、3为PQ节点,节点4为PV节点、节点5为平衡节点,试分别用高斯—赛德尔法潮流计算其潮流。取收敛判据为|△maxV|610。给定:程序如下:clearclc7I=[-2,-3,2,2,3];J=[4,5,3,1,1];R=[0,0,0.08,0.04,0.1];X=[0.015,0.03,0.3,0.25,0.35];K=[1.05,1.05,0.25,0.25,0];n=5;L=5;Y=zeros(2*n,n);form=1:Li=I(m);j=J(m);r=R(m);x=X(m);k=K(m);ifi*j==0Y(2*i-1,i)=Y(2*i-1,i)+r;Y(2*i,i)=Y(2*i,i)-x;endifi*j0Y(2*i-1,j)=Y(2*i-1,j)-r/(r^2+x^2);Y(2*i,j)=Y(2*i,j)+x/(r^2+x^2);Y(2*j-1,i)=Y(2*i-1,j);Y(2*j,i)=Y(2*i,j);Y(2*i-1,i)=Y(2*i-1,i)+r/(r^2+x^2);Y(2*i,i)=Y(2*i,i)-x/(r^2+x^2)+k;Y(2*j-1,j)=Y(2*j-1,j)+r/(r^2+x^2);Y(2*j,j)=Y(2*j,j)-x/(r^2+x^2)+k;endifi*j0i=-i;Y(2*i-1,j)=Y(2*i-1,j)-r/(r^2+x^2)/k;Y(2*i,j)=Y(2*i,j)+x/(r^2+x^2)/k;Y(2*j-1,i)=Y(2*i-1,j);Y(2*j,i)=Y(2*i,j);Y(2*i-1,i)=Y(2*i-1,i)+r/(r^2+x^2)/k^2;Y(2*i,i)=Y(2*i,i)-x/(r^2+x^2)/k^2;Y(2*j-1,j)=Y(2*j-1,j)+r/(r^2+x^2);Y(2*j,j)=Y(2*j,j)-x/(r^2+x^2);endendYP=[-1.6,-2.0,-3.7,5.0,0];Q=[-0.8,-1.0,-1.3,0,0];E=[1,1,1,1.05,1.05];F=[0,0,0,0,0];k=0;V=[1,1,1,1.05,1.05];A=[0,0,0,0,0];8h=3;m=0.000001;Vm=1;whileVmmVm=0;fori=1:n-1j=1;A1=0;A2=0;ifijforj=1:i-1g=Y(2*i-1,j);b=Y(2*i,j);e=E(j);f=F(j);A1=A1+g*e-b*f;A2=A2+g*f+b*e;endendforj=i+1:ng=Y(2*i-1,j);b=Y(2*i,j);e=E(j);f=F(j);A1=A1+g*e-b*f;A2=A2+g*f+b*e;ende=E(i);f=F(i);p=P(i);q=Q(i);g=Y(2*i-1,i);b=Y(2*i,i);ifihg=Y(2*i-1,i);b=Y(2*i,i);Q(i)=-b*(e^2+f^2)-e*A2+f*A1;q=Q(i);E(i)=g/(g^2+b^2)*((p*e+q*f)/(e^2+f^2)-A1)+b/(g^2+b^2)*((p*f-q*e)/(e^2+f^2)-A2);v=V(i);F(i)=sqrt(v^2-E(i)^2);A(i)=atan(F(i)/E(i));A(i)=A(i)*180/pi;continueendE(i)=g/(g^2+b^2)*((p*e+q*f)/(e^2+f^2)-A1)+b/(g^2+b^2)*((p*f-q*e)/(e^2+f^2)-A2);F(i)=g/(g^2+b^2)*((p*f-q*e)/(e^2+f^2)-A2)+b/(g^2+b^2)*((p*e+q*f)/(e^2+f^2)-A1);v=sqrt(E(i)^2+F(i)^2);Vc=v-V(i);9Vc=abs(Vc);ifVcVmVm=Vc;endV(i)=v;A(i)=atan(F(i)/E(i));A(i)=A(i)*180/pi;endk=k+1;endforj=1:ne=E(j);f=F(j);g=Y(2*i-1,j);b=Y(2*i,j);P(n)=P(n)+E(n)*(g*e-b*f);Q(n)=Q(n)-E(n)*(g*f+b*f);endkPQVA运行结果:Y=1.3787-0.6240-0.754700-6.29173.90022.641500-0.62401.4539-0.8299003.9002-66.98083.112063.49210-0.7547-0.82991.5846002.64153.1120-35.7379031.746000000063.49210-66.66670000000031.74600-33.3333k=11P=-1.6000-2.0000-3.70005.00000.523810Q=-0.8000-1.0000-1.30001.38850.5238V=0.88851.08171.05791.05001.0500A=-11.6107-0.41331.17980.00280