EditedbyCharlesKittleGivenbySUNXiaosongDept.MaterialsScienceSichuanUniversitySolidStatePhysicsAboutthecourse•Totalcredit:4–Totalcoursehoursneeded:68–Togainthecredityoushould•notmiss10%coursesandpasstheexam–Grademarkincluding•homework:10%•middletermexam:20%•finalexam70%Chinese(四川话、川普)toEnglish:———agreatChallengeLanguageusedtogivethecourse:PercentageofEnglish/Chinese:———50/50AconceptfirstlygiveninEnglishAndthenre-discussedinChineseHavingnotpassedCET-4:aninvalidpretextTextManuel:•IntroductiontoSolidStatePhysics7theditionbyC.Kittelastrongrecommendation•固体物理四川大学材料系科学出版社•固体物理吕世骥编北大出版社ReferenceBooks•Elementarysolidstatephysics:principle&applicationsbyM.A.Omar•SolidstatephysicsbyN.W.Ashcroft,N.D.Mermin•固体物理基础阎守胜编•固体物理韩汝琦黄昆编•固体物理顾秉林王喜坤编•固体物理方俊鑫陆栋编Purposeofthecourse•Differentstatesofthematerialsinnature:solidstate,liquid,gas,plasmathebasicstateformaterialstobeexistedSolidstatematerials:crystal,amorphousandquasi-crystal,condensedmaterialsPurposeofthecourseSolidStatePhysics:torevealandstudythestructuresandproperties(electronic,magnetic,thermal,mechanical,opticaletc)ofcrystallinematerialsPurposeofthecourseI-VcurveCHAPTER1.CrystalstructureContentPeriodicarraysofatomslatticetranslationvectorsbasisandcrystalstructureprimitivelatticeFundamentaltypesoflatticestwo-dimensionallatticetypes,three-dimensionallatticetypesIndexsystemforcrystalplanesSimplecrystalstructuresNaCl,CsCl,HCP,Diamond,CubicZnSNonidealcrystalstructuresCHAPTER1.Crystalstructure•Preface:abriefreviewaboutSolidStatePhysics•HumanknowledgeaboutcrystalsMaterialswithperfectappearancenoticedandusedbypeoplealongtimeagodiamondrings,crowndecorating•PuzzledwithsomespecialpropertiesPerfectcrystalsimagesdiamondicequartzWHYBriefreview:humanknowledgeaboutcrystals•Earliestdescribesaboutcrystals:Chinesepharmacies:1000yearsagoUsingcrystalsascurrency:In768AD,JapanEuropeansettlersboughtAmericafromIndian400yearsdiamond-likestonesBriefreview:abouttheword“crystal”•DerivationfromaLatinwordmeansiceorquartz•AtermspecifiesthematerialswithperfectappearanceBriefreview:historyofSolidstatephysics:mile-stone•in1801,R.J.HaüyRationalindiceslaw–Asetofplanesdescribedby3rationalnumbers•in1824,A.L.Seeberanempiricalattractive&repulsivelaw•in1912,M.von.Laue&coworkersX-raydiffractionmethod•in1913,W.L.BraggexplanationofX-raydiffractionexperimentresultsDiscoveryofX-ray:1895byW.K.Röntgen1845~1923HVX-rayin1912,M.von.Laue&coworkersX-raydiffractionmethod,1904Nobelprizein1913,W.L.BraggexplanationofX-raydiffractionresults,in1915Nobelprized2dsin=nBriefreview:aboutSolidStatePhysics•oncebeingregardedasabranchofAtomicPhysics•thenanindependentscienceconcerningwithcondensedmaterialsespeciallycrystallinematerialsSolidStatePhysicsincluding:grouptheory,defectsinsolid,energybandtheory,anddi-electronic,magnetic,super-conductiveandphasechangeetc.PERIODICARRYOFATOMSMacroscopicproperties–symmetry,–uniform,–non-isotropy,–cleave,–opposite-angleconversation–lowestenergy&fixedmeltingpointSymmetry:exampleinNatureSymmetry:exampleofNaCl20080226uniform•Densityofcrystallinematerials•Physicalandchemicalpropertiesofcrystallinematerials–Tasteofcandy–Tasteofsalts–Transparencyofquartznon-isotropy:exampleofgraphite&calciteConductivityofgraphite:caxe:insulatorabplane:conductorabcCalciteCleavity:easilybreakingalongwithsomeplanesOpposite-angleconversationCrystallinequartzM-m(600),m-R(63013'),m-r(38013')lowestenergy&fixedmeltingpointCrystallinematerialswithfixedmeltingpointice:00Csilicon:14200Cgermanium:937.40Ccarbon:34000CSiC:29000CAguessaboutcrystallinestructure•TheinfiniterepetitionofidenticalstructureunitsinspaceThetermsofdescribingcrystallinestructure:latticeandbasislongitudelatitudelatticepointLatticeandlatticepointBasis:groupofatomsCrystallinestructure:2DexampleCrystal=periodicarrayofgroupofatoms(basis)Crystalstructure=equivalentpointsdistributioninspace干冰的结构示意图Crystallinestructure:2DexampleRe-creationofcrystal=attachinggroupofatomsonequivalentpointsCrystallinestructure:2Dexamplea1a2T=n1a1+n2a2Thecrystalstructurecanbediscussedbythedistributionofequivalentpointsinspace.晶体空间结构:元胞的周期排列面心立方结构的例子格点重复基元:LatticeTranslationVectors•Latticeandlatticepoint:Usingfundamentaltranslationvectorsa1,a2a3,andarbitraryintegersu1,u2,u3,alatticecanbedefinedasr’=r+u1a1+u2a2+u3a3=r+TLatticeisinvariableunderoperationT.•Basis:agroupofatomspointp’pointpLatticeTranslationVectorsa1a2T=4a1+2a2pointp’pointpCrystalstructure•Byattachingbasistoeachlatticepoint,acrystalcanbeformed,wehavelattice+basis=crystalstructure•SymmetryoperationsTranslationoperation:T=u1a1+u2a2+u3a3Pointoperations:rotation,mirror,inversion,andcompoundoperationBasisandthecrystalstructure•Basis:agroupofatomsidenticalincomposition,arrangement,andorientation•Atomsinthebasis:bya1,a2,a3,theatomscanbedenoteasrj=xja1+yja2+zja30xj,yjzj1Discussionaboutthelattice•Foragivencrystallinestructure,therearemorethanonesetofbasicvector.a5a6DiscussionaboutthelatticeChoiceofthebasictranslationvector1.Foragivenlattice,manysetsofbasicvector2.Thosecanshowthesymmetry3.Anequalandrectangularsetofvectorsa1a2prim