反比例函数与一次函数关系

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

反比例函数与一次函数的关系•当可能是在同一坐标系中的图像与函数时,函数xayaxya10yxoA1yxo-1Byx1CyxoD-1•在同一直角坐标系中,•函数y=kx-k(k≠0)与(k≠0)的图象大致是xky.6,,412,)2003.(4纵坐标是点的并且两点的图象相交于的图象与一次函数已知反比例函数如图年海南PQPkxyxy.)2(;)1(的面积求式求这个一次函数的解析POQyxoPQ如图,反比例函数和正比例函数y2=k2x的图象交于A(-1,-3)、B(1,3)两点,若y1>y2,则x的取值范围是(A)-1<x<0(B)-1<x<1(C)x<-1或0<x<1(D)-1<x<0或x>1xky已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1如图,已知一次函数(m为常数)的图象与反比例函数(k为常数,)的图象相交于点A(1,3).(1)求这两个函数的解析式及其图象的另一交点的坐标;(2)观察图象,写出使函数值的自变量的取值范围.1yxm2kyx12yy≥•如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).•(1)求反比例函数的解析式;•(2)若点P(n,1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.kx如图,已知A(-4,n),B(2,-4),是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程的解(看图写)(4)求不等式解集(看图写).xmy0xmbkx0xmbkx练一练如图,一次函数的图象与y轴交于点A,与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐标为2,(1)求一次函数和反比例函数的解析式;(2)直接写出时x的取值范围。11ykx122kyx12yy平面直角坐标系中,直线AB交x轴于点A,交y轴于点B且与反比例函数图像分别交于C、D两点,过点C作CMx轴于M,AO=6,BO=3,CM=5。求直线AB的解析式和反比例函数解析式。已知反比例函数(k1>0)与一次函数相交于A、B两点,AC⊥x轴于点C.若△OAC的面积为1,且AC:OC=2.(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?xky112221(0)ykxk函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(a,1)、B(1,b)两点.•(1)求函数y2的表达式;•(2)观察图象,比较当x>0时,y1与y2的大小.•一次函数y=kx+b图象与反比例函数y=的图象交于点A(2,1),B(-1,n)两点。•(1)求反比例函数的解析式•(2)求一次例函数的解析式•(3)求△AOB的面积•(4)求则kx+b>的x的取值范围mxmxxyOBACD如图,已知反比例函数的图象经过点(0.5,8),直线经过该反比例函数图象上的点Q(4,m).(1)求上述反比例函数和直线的函数表达式;(2)设该直线与轴、轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连结0P、OQ,求△OPQ的面积.)0(kxkybxy•如图,一次函数的图象与轴交于点A,与轴交于点B,与反比例函数图象的一个交点为M(﹣2,m).•(1)求反比例函数的解析式;•(2)若点P是反比例函数图象上一点,且,求点P的坐标.1yxkyxkyxkyx2BOPAOBSS△△直线y=2x+2与y轴交于A点,与反比例函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且AO:oH=2.(1)求k的值;(2)点N(a,1)是反比例函数(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.xkyxky如图,直线y=x+2分别交x、y轴于点A、C,P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,S△ABP=9.(1)求点P的坐标;(2)设点R与点P的同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴,T为垂足,当△BRT与△AOC相似时,求点R的坐标.已知函数y=x与反比例函数y=(x>0)的图象交于点A.将y=x的图象向下平移6个单位后与双曲线y=交于点B,与x轴交于点C.•(1)求点C的坐标;•(2)若=2,求反比例函数的解析式kxkx直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()•如图,点A(m,m+1),B(m+3,m-1)都在反比例函数的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.xkyxOyAB•如图,直线l经过点A(1,0),且与双曲线y=(x>0)交于点B(2,1),过点P(p,p-1)(p>1)作x轴的平行线分别交曲线y=(x>0)和y=-(x<0)于M,N两点.(1)求m的值及直线l的解析式;mxmxmx•(2)若点P在直线y=2上,求证:△PMB∽△PNA;•(3)是否存在实数p,使得S△AMN=4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.反比例函数的几何意义•如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为.•如图,双曲线经过矩形QABC的边BC的中点E,交AB于点D。若梯形ODBC的面积为3,则双曲线的解析式为)0(>kxky•如图,已知双曲线经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=______.)0k(xky>•如图,平行四边形AOBC中,对角线交于点E,双曲线(0)经过A、E两点,•若平行四边形AOBC的面积为18,则k=__kyx=•如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线y=(k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为.•如图,函数y=﹣x与函数的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为()•如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于•点M,N,反比例函数y=的图象经过点M,N.•(1)求反比例函数的解析式;•(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.kx•如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是.•如图,点A在双曲线y=的第一象限的那一支上,AB垂直于x轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.•在函数y1=(x<0)和y2=(x>0)的•图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=S△BOC=则线段AB的长度=.

1 / 35
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功