新湘教版九年级下册数学全册教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1章二次函数1.1二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1指出下列函数中哪些是二次函数.(1)y=(x-3)2-x2;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x2+x.【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围.例3已知函数y=(m2-m)x2+mx+(m+1)(m是常数),当m为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200mmm得010mm或,∴m=1.即当m=1时,函数y=(m2-m)x2+mx+(m+1)是一次函数.(2)由m2-m≠0得m≠0且m≠1,∴当m≠0且m≠1时,函数y=(m2-m)x2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是()A.2123yxxB.y=3x3+2x2C.y=(x-2)2-x3D.212yx2.二次函数y=2x(x-1)的一次项系数是()A.1B.-1C.2D.-23.若函数232(3)1kkykxkx是二次函数,则k的值为()A.0B.0或3C.3D.不确定4.若y=(a+2)x2-3x+2是二次函数,则a的取值范围是.5.已知二次函数y=1-3x+5x2,则二次项系数a=,一次项系数b=,常数项c=.6.某校九(1)班共有x名学生,在毕业典礼上每两名同学都握一次手,共握手y次,试写出y与x之间的函数关系式,它(填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y关于x的函数关系式;(2)试求自变量x的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).【答案】1.D2.D3.A4.a≠-25.5,-3,16.21122yxx是7.(1)y=25-πx2=-πx2+25.(2)0<x≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4.即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.教材P4第1~3题.2.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x2图象的错误画法.探究2y=ax2(a>0)图象的性质在同一坐标系中,画出y=x2,212yx,y=2x2的图象.【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a>0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y随x的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax2(a>0)图象的性质1.图象开口向上.2.对称轴是y轴,顶点是坐标原点,函数有最低点.3.当x>0时,y随x的增大而增大,简称右升;当x<0时,y随x的增大而减小,简称左降.三、典例精析,掌握新知例已知函数24(2)kkykx是关于x的二次函数.(1)求k的值.(2)k为何值时,抛物线有最低点,最低点是什么?在此前提下,当x在哪个范围内取值时,y随x的增大而增大?【分析】此题是考查二次函数y=ax2的定义、图象与性质的,由二次函数定义列出关于k的方程,进而求出k的值,然后根据k+2>0,求出k的取值范围,最后由y随x的增大而增大,求出x的取值范围.解:(1)由已知得22042kkk,解得k=2或k=-3.所以当k=2或k=-3时,函数24(2)kkykx是关于x的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x≥0时,y随x的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x-1C.34yxD.y=1x2.已知点(-1,y1),(2,y2),(-3,y3)都在函数y=x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y33.抛物线y=13x2的开口向,顶点坐标为,对称轴为,当x=-2时,y=;当y=3时,x=,当x≤0时,y随x的增大而;当x>0时,y随x的增大而.4.如图,抛物线y=ax2上的点B,C与x轴上的点A(-5,0),D(3,0)构成平行四边形ABCD,BC与y轴交于点E(0,6),求常数a的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D2.A3.上,(0,0),y轴,43,±3,减小,增大4.解:依题意得:BC=AD=8,BC∥x轴,且抛物线y=ax2上的点B,C关于y轴对称,又∵BC与y轴交于点E(0,6),∴B点为(-4,6),C点为(4,6),将(4,6)代入y=ax2得:a=38.五、师生互动,课堂小结1.师生共同回顾二次函数y=ax2(a>0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.1.教材P7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画y=x2的图象,从而掌握二次函数y=ax2(a>0)图象的画法,再由图象观察、探究二次函数y=ax2(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=-12x2的图象吗?二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x2与y=-12x2有何关系?归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数y=ax2(a<0)性质问:你能结合y=-12x2的图象,归纳出y=ax2(a<0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a0)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随x的增大而减小,简称右降,当x<0时,y随x的增大而增大,简称左升.探究3二次函数y=ax2(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点

1 / 161
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功