硫化氢腐蚀的机理及影响因素..

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1硫化氢腐蚀的机理及影响因素作者:安全管理网来源:安全管理网1.H2S腐蚀机理自20世纪50年代以来,含有H2S气体的油气田中,钢在H2S介质中的腐蚀破坏现象即被看成开发过程中的重大安全隐患,各国学者为此进行了大量的研究工作。虽然现已普遍承认H2S不仅对钢材具有很强的腐蚀性,而且H2S本身还是一种很强的渗氢介质,H2S腐蚀破裂是由氢引起的;但是,关于H2S促进渗氢过程的机制,氢在钢中存在的状态、运行过程以及氢脆本质等至今看法仍不统一。关于这方面的文献资料虽然不少,但以假说推论占多,而真正的试验依据却仍显不足。因此,在开发含H2S酸性油气田过程中,为了防止H2S腐蚀,了解H2S腐蚀的基本机理是非常必要的。(1)硫化氢电化学腐蚀过程硫化氢(H2S)的相对分子质量为34.08,密度为1.539kg/m3。硫化氢在水中的溶解度随着温度升高而降低。在760mmHg,30℃时,硫化氢在水中的饱和浓度大约3580mg/L。2在油气工业中,含H2S溶液中钢材的各种腐蚀(包括硫化氢腐蚀、应力腐蚀开裂、氢致开裂)已引起了足够重视,并展开了众多的研究。其中包括Armstrong和Henderson对电极反应分两步进行的理论描述;Keddamt等提出的H2S04中铁溶解的反应模型;Bai和Conway对一种产物到另一种产物进行的还原反应机理进行了系统的研究。研究表明,阳极反应是铁作为离子铁进入溶液的,而阴极反应,特别是无氧环境中的阴极反应是源于H2S中的H+的还原反应。总的腐蚀速率随着pH的降低而增加,这归于金属表面硫化铁活性的不同而产生。Sardisco,Wright和Greco研究了30℃时H2S-C02-H20系统中碳钢的腐蚀,结果表明,在H2S分压低于0.1Pa时,金属表面会形成包括FeS2,FeS,Fe1-XS在内的具有保护性的硫化物膜。然而,当H2S分压介于0.1~4Pa时,会形成以Fe1-XS为主的包括FeS,FeS2在内的非保护性膜。此时,腐蚀速率随H2S浓度的增加而迅速增长,同时腐蚀速率也表现出随pH降低而上升的趋势。Sardisco和Pitts发现,在pH处于6.5~8.8时,表面只形成了非保护性的Fe1-XS;当pH处于4~6.3时,观察到有FeS2,FeS,Fe1-XS形成。而FeS保护膜形成之前,首先是形成FeS1-X;因此,即使在低H2S浓度下,当pH在3~5时,在铁刚浸入溶液的初期,H2S也只起加速腐蚀的作用,而非抑制作用。只有在电极浸入溶液足够长的时间后,随着FeS1-X逐渐转变为FeS2和FeS,抑制腐蚀的效果才表现出来。根据Hausler等人的研究结果,尽管界面反应的重3要性不容忽略,但腐蚀中的速率控制步骤却是通过硫化物膜电荷的传递。干燥的H2S对金属材料无腐蚀破坏作用,H2S只有溶解在水中才具有腐蚀性。在油气开采中与CO2和氧相比,H2S在水中的溶解度最高。H2S一旦溶于水,便立即电离,使水具有酸性。H2S在水中的离解反应为:释放出的氢离子是强去极化剂,极易在阴极夺取电子,促进阳极铁溶解反应而导致钢铁的全面腐蚀。H2S水溶液在呈酸性时,对钢铁的电化学腐蚀过程人们习惯用如下的反应式表示:阳极反应Fe-2e→Fe2+阴极反应2H++2e→Had(钢中扩散)+Had→H2↓阳极反应的产物Fe2++S2-→FeS↓式中Had——钢表面上吸附的氢原子;4Hab——钢中吸收的氢原子。阳极反应生成的硫化铁腐蚀产物,通常是一种有缺陷的结构,它与钢铁表面的黏结力差,易脱落,易氧化,它电位较低,于是作为阴极与钢铁基体构成一个活性的微电池,对钢基体继续进行腐蚀。扫描电子显微镜和电化学测试结果均证实了钢铁与腐蚀产物硫化铁之间的这一电化学电池行为。对钢铁而言,附着于其表面的腐蚀产物(FexSy)是有效的阴极,它将加速钢铁的局部腐蚀。于是有些学者认为在确定H2S腐蚀机理时,阴极性腐蚀产物(FexSy)的结构和性质对腐蚀的影响,相对H2S来说,将起着更为主导的作用。腐蚀产物主要有Fe9S8,Fe3S4,FeS2,FeS。它们的生成是随pH、H2S浓度等参数而变化。其中Fe9S8的保护性最差,与Fe9S8相比,FeS和FeS2具有较完整的晶格点阵,因此保护性较好。(2)硫化氢导致氢损伤过程H2S水溶液对钢材电化学腐蚀的另一产物是氢。被钢铁吸收的氢原子,将破坏其基体的连续性,从而导致氢损伤。在含H2S酸性油气田上,氢损伤通常表现为硫化物应力开裂(SSCC)、氢诱发裂纹(HIC)和氢鼓泡(HB)等形式的破坏。5H2S作为一种强渗氢介质,是因为它本身不仅提供氢的来源,而且还起着毒化作用,阻碍氢原子结合成氢分子的反应,于是提高了钢铁表面氢浓度,其结果加速了氢向钢中的扩散溶解过程。至于氢在钢中存在的状态,导致钢基体开裂的过程,至今也无一致的认识。但普遍承认,钢中氢的含量一般是很小的,有试验表明通常只有百万分之几。若氢原子均匀地分布于钢中,则难以理解它会萌生裂纹,因为萌生裂纹的部位必须有足够富集氢的能量。实际工程上使用的钢材都存在着缺陷,如面缺陷(晶界、相界等)、位错、三维应力区等,这些缺陷与氢的结合能力强,可将氢捕捉陷住,使之难以扩散,便成为氢的富集区,通常把这些缺陷称为陷井。富集在陷井中的氢一旦结合成氢分子,积累的氢气压力很高,有学者估算这种氢气压力可达300MPa,于是促使钢材脆化,局部区域发生塑性变形,萌生裂纹最后导致开裂。钢在含H2S溶液中的腐蚀过程分三步骤(如图5-1-1):①氢原子在钢表面形成和从表面进入。②氢原子在钢基体中扩散。③氢原子在缺陷处富集。62.气-液两相湿H2S环境下溶液的热力学模型从热力学角度看,H2S在水中的溶解度时放热反应,因而随着温度的升高溶解度降低,在压力不变的情况下满足:式中CH2S——在H2S在水溶液中的溶解度;C0——常数;△H——溶解热;7R——气体常数。根据Henry定律,稀溶液浓度:CH2S=pH2S/k式中k——Henry常数,lnk=-6517/T+0.2111lnT-0.0104T+25.24pH2S——气体H2S中的分压,为H2S气体分数与环境压力的乘积。H2S在水溶液中以一级电离为主,H2S=HS-+H+;则有:[HS-]·[H+]=k1×CH2S式中k1是化学反应常数。所以溶液中的HS-和H+浓度主要与温度、气相中H2S分压有着密切的关系。以上分析在溶液和薄液情况下均适用。3.含H2S酸性油气田腐蚀破坏类型在油气田的勘探开发过程中,伴生气中的H2S来源主要是地层中存在的或钻井过程中钻井液热分解形成H2S,以及油气井中存在的硫酸盐还原菌不断释放出H2S气体。除了含H2S外,通常还有水、CO2、盐类、残酸以及开采过程进入的氧等腐蚀性杂质,所以它比单一的H2S水溶液的腐蚀性要强得多。油气田设施因H2S引起的腐蚀8破坏主要表现有如下类型。(1)均匀腐蚀这类腐蚀破坏主要表现为局部壁厚减薄、蚀坑或穿孔,它是H2S腐蚀过程阳极铁溶解的结果。(2)局部腐蚀在湿H2S条件下,H2S对钢材的局部腐蚀是石油天然气开发中最危险的腐蚀。局部腐蚀包括点蚀、蚀坑及局部剥落形成的台地侵蚀、氢致开裂(HIC)、硫化物应力腐蚀开裂(SSCC)、氯化物应力分离腐蚀开裂及微生物诱导腐蚀(MIC)等形式的破坏。①点蚀是指在H2S环境中,均匀腐蚀形成的FeS鳞皮与基体Fe形成电极对,这主要是由于具有半保护性的FeS膜自身对基体覆着不完整造成的,这种电极对会对钢材形成镀点腐蚀,严重时会导致穿孔,这主要是腐蚀过程中钢基体形成镀点处腐蚀介质pH降低造成的。②蚀坑及台地侵蚀是指点腐蚀发展到较大区域,形成的肉眼可以看到的材料表面的腐蚀坑,台地侵蚀是成片的点腐蚀连成片,出现局部腐蚀加快形成的较大面积的腐蚀台阶状的表面形貌。9③氢致开裂(HIC)在对低合金高强度钢在湿硫化氢环境中开裂机理的研究基础上,目前一般认为湿硫化氢引起的氢致开裂有以下四种形式。a.氢鼓泡(HB)钢材在硫化氢腐蚀过程中,表面的水分子中产生大量氢原子,析出的氢原子向钢材内部渗入,在缺陷部位(如杂质、夹杂界面、位错、蚀坑聚集,结合成氢分子。氢分子所占据的空间为氢原子的20倍,于是使钢材内部形成很大的内压,即钢材内部产生很大的内应力,使钢材的脆性增加,当内部压力达到103~104MPa(104~105atm)就引起界面开裂,形成氢鼓泡。氢鼓泡常发生于钢中夹杂物与其他的冶金不连续处,其分布平行于钢板表面。氢鼓泡的发生并不需要外加应力。b.氢致开裂(HIC)在钢的内部发生氢鼓泡区域,当氢的压力继续增高时,小的鼓泡裂纹趋向于相互连接,形成有阶梯状特征的氢致开裂。钢中MnS夹杂的带状分布增加HIC的敏感性,HIC的发生也不需要外加应力。c.应力导向氢致开裂(SOHIC)应力导向氢致开裂是在应力引导下,使在夹杂物与缺陷处因氢聚集而形成的成排的小裂纹沿着垂直于应力的方向发展,即向压力容器与管道的壁厚方向拳展。SOHIC常发生在焊接接头的热影响区及高应力集中区。应力集中常为裂纹状10缺陷或应力腐蚀裂纹所引起。④硫化物应力腐蚀开裂(SSCC)硫化氢产生的氢原子渗透到钢的内部,溶解于晶格中,导致脆性,在外加拉应力或残余应力作用下形成开裂。SSCC通常发生于焊缝与热影响区的高硬度区。⑤氯化物应力腐蚀开裂这种开裂由氯离子诱发产生,硫离子的存在对氯离子有促进作用,加速金属的腐蚀。⑥微生物诱导腐蚀(MIC)在含H2S的湿环境中,微生物尤其是硫酸盐厌氧还原菌的活动,会促使钢材产生阳极极化,会诱发严重的点蚀,且会促进与氢相关的氢致开裂及含硫化物的应力腐蚀发生(SSCC)。4.H2S腐蚀的影响因素(1)均匀腐蚀①腐蚀破坏的特点含H2S酸性油气田使用的钢材绝大部分是碳钢和低合金钢。于是在酸性油气系统的腐蚀中,H2S除作为阳极过程的催化剂,促进铁离子的溶解,加速钢材质量损失外,同时还为腐蚀产物提供S2-,在钢表面生成硫化铁腐蚀产物膜。对钢铁而言,硫化铁为阴极,它在钢表面沉积,并与钢表面构成电偶,使钢表面继11续被腐蚀。因此,许多学者认为,在H2S腐蚀过程中,硫化铁产物膜的结构和性质将成为控制最终腐蚀速率与破坏形状的主要因素。硫化铁膜的生成、结构及其性质受H2S浓度、pH、温度、流速、暴露时间以及水的状态等因素的影响。对从井下到竺粤警个油气开采系统来说,这些因素都是变化的,于是硫化铁膜的结构和性质及其反映出的保护性也就各异。因此,在含H2S酸性油气田上的腐蚀破坏往往表现为由点蚀导致局部壁厚减薄、蚀坑或/和穿孔。局部腐蚀发生在局部小范围区域内,其腐蚀速率往往比预测的均匀腐蚀速率快数倍至数十倍,控制难度较大。②影响腐蚀的因素a.H2S浓度H2S浓度对钢材腐蚀速率的影响如图5-1-2所示。软钢在含H2S蒸馏水中,当H2S含量为200~400mg/L时,腐蚀率达到最大,而后又随着H2S浓度增加而降低,到1800mg/L以后,H2S浓度对腐蚀率几乎无影响。如果含H2S介质中还含有其他腐蚀性组分,如CO2、Cl-、残酸等时,将促使H2S对钢材的腐蚀速率大幅度增高。12H2S浓度对腐蚀产物FeS膜也具有影响。有研究资料表明,H2S为2.0mg/L的低浓度时,腐蚀产物为FeS2和FeS;H2S浓度为2.0~20mg/L时,腐蚀产物除FeS2和FeS外,还有少量的Fe9S8生成;H2S浓度为20~600mg/L时,腐蚀产物中Fe9S8的含量最高。b.pHH2S水溶液的pH将直接影响钢铁的腐蚀速率。通常表现在pH为6时是一个f临界值。当pH小于6时,钢的腐蚀率高,腐蚀液呈黑色、浑浊。NACET-1C-2小组认为气井底部pH为6±0.2是13决定油管寿命的l临界值。当pH小于6时,油管的寿命很少超过20年。pH将直接影响着腐蚀产物硫化铁膜的组成、结构及溶解度等。通常在低pHH2S溶液中,生成的是以含硫量不足的硫化铁,如Fe9S8为主的无保护性的膜,于是腐蚀加速;随着pH的增高,FeS2含量也随之增多,于是在高pH下生成的是以FeS2为主的具有一定保护效果的膜。c.温度温度对腐蚀的影响较复杂。钢铁在H2S水溶液中的腐蚀率通常是随

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功