1动点问题专题训练1、如图,已知ABC△中,10ABAC厘米,8BC厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?解:(1)①∵1t秒,∴313BPCQ厘米,∵10AB厘米,点D为AB的中点,∴5BD厘米.又∵厘米,∴835PC厘米8PCBCBPBC,,∴PCBD.又∵ABAC,∴BC,∴BPDCQP△≌△.·············································································(4分)②∵PQvv,∴BPCQ,又∵BPDCQP△≌△,BC,则45BPPCCQBD,,∴点P,点Q运动的时间433BPt秒,∴515443QCQvt厘米/秒.··································································(7分)(2)设经过x秒后点P与点Q第一次相遇,由题意,得1532104xx,AQCDBP2解得803x秒.∴点P共运动了803803厘米.∵8022824,∴点P、点Q在AB边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.·········································(12分)2、直线364yx与坐标轴分别交于AB、两点,动点PQ、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出AB、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S时,求出点P的坐标,并直接写出以点OPQ、、为顶点的平行四边形的第四个顶点M的坐标.解(1)A(8,0)B(0,6)···············1分(2)86OAOB,10AB点Q由O到A的时间是881(秒)点P的速度是61028(单位/秒)·1分当P在线段OB上运动(或03t≤≤)时,2OQtOPt,2St··········································································································1分当P在线段BA上运动(或38t≤)时,6102162OQtAPtt,,如图,作PDOA于点D,由PDAPBOAB,得4865tPD,······························1分21324255SOQPDtt·······································································1分(自变量取值范围写对给1分,否则不给分.)(3)82455P,····························································································1分xAOQPBy312382412241224555555IMM,,,,,····················································3分3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?解:(1)⊙P与x轴相切.∵直线y=-2x-8与x轴交于A(4,0),与y轴交于B(0,-8),∴OA=4,OB=8.由题意,OP=-k,∴PB=PA=8+k.在Rt△AOP中,k2+42=(8+k)2,∴k=-3,∴OP等于⊙P的半径,∴⊙P与x轴相切.(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P在线段OB上时,作PE⊥CD于E.∵△PCD为正三角形,∴DE=12CD=32,PD=3,∴PE=332.∵∠AOB=∠PEB=90°,∠ABO=∠PBE,∴△AOB∽△PEB,∴3342,=45AOPEABPBPB即,4∴315,2PB∴31582POBOPB,∴315(0,8)2P,∴31582k.当圆心P在线段OB延长线上时,同理可得P(0,-3152-8),∴k=-3152-8,∴当k=3152-8或k=-3152-8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.4(09哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.解:55在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分ACBPQED图166PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C时,请直接..写出t的值.解:(1)1,85;(2)作QF⊥AC于点F,如图3,AQ=CP=t,∴3APt.由△AQF∽△ABC,22534BC,得45QFt.∴45QFt.∴14(3)25Stt,即22655Stt.(3)能.①当DE∥QB时,如图4.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABC,得AQAPACAB,即335tt.解得98t.②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABC,得AQAPABAC,即353tt.解得158t.(4)52t或4514t.①点P由C向A运动,DE经过点C.连接QC,作QG⊥BC于点G,如图6.PCt,222QCQGCG2234[(5)][4(5)]55tt.由22PCQC,得22234[(5)][4(5)]55ttt,解得52t.②点P由A向C运动,DE经过点C,如图7.ACBPQED图4ACBPQED图5AC(E))BPQD图6GAC(E))BPQD图7G722234(6)[(5)][4(5)]55ttt,4514t】6如图,在RtABC△中,9060ACBB°,°,2BC.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CEAB∥交直线l于点E,设直线l的旋转角为.(1)①当度时,四边形EDBC是等腰梯形,此时AD的长为;②当度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90°时,判断四边形EDBC是否为菱形,并说明理由.解(1)①30,1;②60,1.5;……………………4分(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED.∵CE//AB,∴四边形EDBC是平行四边形.……………………6分在Rt△ABC中,∠ACB=900,∠B=600,BC=2,∴∠A=300.∴AB=4,AC=23.∴AO=12AC=3.……………………8分在Rt△AOD中,∠A=300,∴AD=2.∴BD=2.∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形……………………10分7如图,在梯形ABCD中,354245ADBCADDCABB∥,,,,∠.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长.(2)当MNAB∥时,求t的值.(3)试探究:t为何值时,MNC△为等腰三角形.OECBDAlOCBA(备用图)ADCBMN8解:(1)如图①,过A、D分别作AKBC于K,DHBC于H,则四边形ADHK是矩形∴3KHAD.················································································1分在RtABK△中,2sin454242AKAB.2cos454242BKAB··························································2分在RtCDH△中,由勾股定理得,22543HC∴43310BCBKKHHC·················································3分(2)如图②,过D作DGAB∥交BC于G点,则四边形ADGB是平行四边形∵MNAB∥∴MNDG∥∴3BGAD∴1037GC·············································································4分由题意知,当M、N运动到t秒时,102CNtCMt,.∵DGMN∥∴NMCDGC∠∠又CC∠∠∴MNCGDC△∽△∴CNCMCDCG···················································································5分即10257tt解得,5017t····················································································6分(3)分三种情况讨论:①当NCMC时,如图③,即102tt∴103t··························································································7分(图①)ADCBKH(图②)ADCBGMNADCBMN(图③)(图④)ADCBMNHE9②当MNNC时,如图④,过N作NEMC于E解法一:由等腰三角形三线合一性质得11102522ECMCtt在RtCEN△中,5c