一元一次方程的应用------方案选择问题1.对问题的初步探究问题1:下表给出的是两种移动电话的计费方式:免费0.1935088方式二免费0.2515058方式一被叫主叫超时费(元/分)主叫限定时间(分)月使用费(元)你了解表格中这些数字的含义吗?探究3问题2:你认为选择哪种计费方式更省钱呢?“与主叫时间相关”1.对问题的初步探究加超时费0.19元/分基本费88元加超时费0.25元/分基本费58元3500150计费方式一计费方式二(1)从表格中的数据,你能把主叫时间分为几部分?(2)你认为选择哪种计费方式更省钱呢?(3)请你分别把主叫时间不同的话费情况用含t的代数式表示出来一、自主学习设一个月内用移动电话主叫为t分(t是正整数).根据表1,当t在不同时间范围内取值,列表说明按方式一和方式二如何计费.主叫时间t/分方式一计费/元方式二计费/元t150t=150150t350t=350t35058+0.25(t-150)58+0.25(350-150)=10858+0.25(t-150)88+0.19(t-350)585888888888主叫时间t/分方式一计费/元方式二计费/元t小于1505888t等于1505888t大于150且小于35058+0.25(t-150)88t等于35010888t大于35058+0.25(t-150)88+0.19(t-350)划算划算划算二、合作探究(4)在两种收费方式下,会不会有这么一个时间,打同样多时间的电话,却收费相同呢?(5)如果有这一时间,在哪段时间?如何根据收费相等列出方程?主叫时间t/分方式一计费/元方式二计费/元t大于150且小于35058+0.25(t-150)88依题意得:58+0.25(t-150)=88去括号得:58+0.25t-37.5=88移项、合并同类项得:0.25t=67.5系数化1得:t=270∴当t=270分时,两种计费方式的费用相等,那么当150t270分和270t350时,两种计费方式哪种更合算呢?二、合作探究当从150增加到350时,按方式一的计费由58元增加到108元,而方式二一直是88元,所以方式一在变化过程中,可能某一主叫时间,两种方式的计费相等.二、合作探究主叫时间t/分方式一计费/元方式二计费/元t大于35058+0.25(t-150)88+0.19(t-350)当t350分时,两种计费方式哪种更合算呢?当t350分时,可以看出,按方式一的计费为108元加上超出350分的部分的超时费0.25(t-350),按方式二的计费为88元加上超时费0.19(t-350),故按方式二的计费少.(6):综合以上的分析,可以发现:时,选择方式一省钱;时,选择方式二省钱.0计费方式一计费方式二270t小于270分t大于270分二、合作探究◆计费方案选择问题:1、分段计费问题,需要分类讨论,弄清如何分类。2、在分类讨论的某个范围内,可借助字母表达式表示计费。3、不同方案的选择的转折点可通过方程计算寻找。三、方法归纳例2.某牛奶加工厂现有鲜奶9吨.若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?例3.校长带领学校的市级三好生去北京旅游.甲旅行社说:“如果校长买全票一张,其他学生享半价优惠。”乙旅行社说:“包括校长在内,全部6折优惠。”全票价为100元.(1)设学生人数为x人,那么这两家旅行社的总费用分别为多少?(2)当学生人数为多少时,两家费用一样多?如何选择旅行社更划算?四、概括整合解决优化方案问题的一般步骤:1、运用一元一次方程解应用题的方法求解两种方案值相等的情况;2、用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,分别代入两种方案中计算,比较两种方案的优劣后下结论.请回顾电话计费问题的探究过程,并回答以下问题:(1)电话计费问题的核心问题是什么?(2)探究解题的过程大致包含哪几个步骤?(3)我们在探究过程中用到了哪些方法,你有哪些收获?1、两种移动电话计费方式(2)一个月内在本地通话200分和350分,按两种计费方式各需交费多少元?(3)对于某个本地通话时间,会出现两种计费方式的收费一样的情况吗?移动联通月租费30元/月0本地通话费0.30元/分0.40元/分(1)如果月通话时间为x分,你能用含x的代数式表示两种计费方式吗?2一家游泳馆每年6—8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元.试讨论并回答:(1)什么情况下,购会员证与不购会员证付一样钱?(2)什么情况下,购会员证比不购证更合算?(3)什么时候么情况下,不购会员证比购证更合算?卡类消费问题解:(1)设消费x次时,购会员证与不购证付的钱一样多.80+x=3xx=40当消费40次时,购会员证与不购证付的钱一样多.(2)当消费超过40次时,购会员证更合算.(3)当消费少于40次时,不购会员证更合算.练习:商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。(1)若商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案。(2)若商场销售一台甲种电视机可获利150元,销一台乙种电视机可获利200元,销售一台丙种电视机获利250元,那么你会选择哪种进货方案?(1)方案一:进甲种电视机χ台,乙种(50-χ)台,则1500χ+(50-χ)×2100=90000χ=25,50-χ=25故甲、乙两种电视机各进25台。方案二:进甲种电视机у台,丙种(50-у)台,则1500у+(50-у)×2500=90000,у=35,50-у=15故甲种进35台,丙种15台。方案三:进乙种电视机z台丙种(50-z)台。则2100z+(150-z)×2500=90000,Z=87.5(舍去)因此有两种进货方案。(2)获利情况:方案一:150×25+200×15=8750(元)方案二:35×150+15×250=9000(元)因为:8750<90000,所以应选择方案二进货。备用练习五、目标检测1、用A4纸在某誊印社复印文件,复印页数不超过20时每页收费0.12元;复印页数超过20页时,超过部分每页收费0.09元.在某图书馆复印同样的文件,不论复印多少页,每页收费0.1元.如何根据复印的页数选择复印的地点使总价格比较便宜?(复印的页数不为零)复印页数x誊印社复印费用/元图书馆复印费用/元x小于200.12x0.1xx等于200.12×20=2.40.1×20=2x大于202.4+0.09(x-20)0.1x解:依题意列表得:(1)当x小于20时,0.12x大于0.1x恒成立,图书馆价格便宜;(2)当x等于20时,2.4大于2,图书馆价格便宜;练习1.某市电话拨号上网有两种收费方式,用户可以任选其一:A.计时制:3元/时;B.包月制:60元/月,另加收通信费1元/时。(每月按30天计算)(1)请你为用户设计一个方案,使用户能合理地选择上网方式。(2)某用户有120小时用于上网(1个月),选用哪种上网方式比较合算?练习解:设购买x元的物品时.不用购物卡和用购物卡购物费用相等,则0.8x+200=xx=1000因此当用费超过1000元时,用购物卡购物合算.某服装店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物,什么情况下买卡购物合算?1.小明到希望书店帮同学们购书,售货员告诉他,如果用20元钱办“希望书店会员卡”,将享受八折优惠,请问在这次买书中,小明在什么情况下,办会员卡与不办会员卡一样?当小明买标价为200元的书时,怎么合算,能省多少钱?