清华仪器分析课件--第七章 原子发射光谱分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第七章原子发射光谱分析(AtomicEmissionSpectrometry,AES)§7-1光学分析概述一、电磁辐射和电磁波谱1.电磁辐射(电磁波,光):以巨大速度通过空间、不需要任何物质作为传播媒介的一种能量形式,它是检测物质内在微观信息的最佳信使。2.电磁辐射的性质:具有波、粒二像性;其能量交换一般为单光子形式,且必须满足量子跃迁能量公式:3.电磁波谱:电磁辐射按波长顺序排列就称光谱。chhEγ射线→X射线→紫外光→可见光→红外光→微波→无线电波高能辐射区γ射线能量最高,来源于核能级跃迁χ射线来自内层电子能级的跃迁光学光谱区紫外光来自原子和分子外层电子能级的跃迁可见光红外光来自分子振动和转动能级的跃迁波谱区微波来自分子转动能级及电子自旋能级跃迁无线电波来自原子核自旋能级的跃迁波长长二、光学分析法及其分类光学分析法可分为:Spectrometricmethod和non-spectrometricmethod两大类。光谱法是基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。AE、AA按能量交换方向分吸收光谱法发射光谱法按作用结果不同分原子光谱→线状光谱分子光谱→带状光谱区别:非光谱法:利用物质与电磁辐射的相互作用测定电磁辐射的反射、折射、干涉、衍射和偏振等基本性质变化的分析方法分类:折射法、旋光法、比浊法、χ射线衍射法光谱法:内部能级发生变化原子吸收/发射光谱法:原子外层电子能级跃迁分子吸收/发射光谱法:分子外层电子能级跃迁非光谱法:内部能级不发生变化仅测定电磁辐射性质改变三、发射光谱与吸收光谱光基态激发态释放能量发光hMM*发射光谱激发态光基态吸收辐射能量*MhM例:γ-射线;x-射线;荧光例:原子吸收光谱,分子吸收光谱吸收光谱§7-2原子发射光谱分析原理一、原子发射光谱的产生物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子M*,当从激发态过渡到低能态或基态时产生发射光谱。M*M+hv通过测量物质的激发态原子发射光谱线的波长和强度进行定性和定量分析的方法叫发射光谱分析法。根据发射光谱所在的光谱区域和激发方法不同,发射光谱法有许多技术,我们仅讨论常规的方法:用火焰、电弧、等离子炬等作为激发源,使被测物质原子化并激发气态原子或离子的外层电子,使其发射特征的电磁辐射,利用光谱技术记录后进行分析的方法叫原子发射光谱分析法,波长范围一般在190~900nm。一般情况下,原子处于基态,在激发光源作用下,原子获得能量,外层电子从基态跃迁到较高能态变为激发态,约经10-8s,外层电子就从高能级向较低能级或基态跃迁,多余的能量的发射可得到一条光谱线。原子中某一外层电子由基态激发到高能级所需要的能量称为激发电位(Excitationpotential)。原子光谱中每一条谱线的产生各有其相应的激发电位。由激发态向基态跃迁所发射的谱线称为共振线(resonanceline)。共振线具有最小的激发电位,因此最容易被激发,为该元素最强的谱线。离子也可能被激发,其外层电子跃迁也发射光谱。由于离子和原子具有不同的能级,所以离子发射的光谱与原子发射的光谱不一样。每一条离子线都有其激发电位。这些离子线的激发电位大小与电离电位高低无关在原子谱线表中,罗马数Ⅰ表示中性原子发射光谱的谱线,Ⅱ表示一次电离离子发射的谱线,Ⅲ表示二次电离离子发射的谱线例如MgⅠ285.21nm为原子线,MgⅡ280.27nm为一次电离离子线。激发电位(Excitationpotential)谱线强度与激发电位成负指数关系。在温度一定时,激发电位越高,处于该能量状态的原子数越少,谱线强度越小。激发电位最低的共振线通常是强度最大的线。激发温度(Excitationtemperature)温度升高,谱线强度增大。但温度升高,电离的原子数目也会增多,而相应的原子数减少,致使原子谱线强度减弱,离子的谱线强度增大。二、热平衡态与原子布居数目玻尔兹曼关系式:此关系式表明激发温度越高、元素的激发电位越低,则原子光谱线就越强;且特征发射光谱线的强度与基态原子浓度呈正比关系。三、谱线的自吸与自蚀(self-absorptionandself-reversalofspectrallines)在一般光源中,是在弧焰中产生的,弧焰具有一定的厚度,弧焰中心a的温度最高,边缘b的温度较低。由弧焰中心发射出来的辐射光,必须通过整个弧焰才能射出,由于弧层边缘的温度较低,因而这里处于基态的同类原子较多。这些低能态的同类原子能吸收高能态原子发射出来的光而产生吸收光谱。原子在高温时被激发,发射某一波长的谱线,而处于低温状态的同类原子又能吸收这一波长的辐射,这种现象称为自吸现象。当自吸现象非常严重时,谱线中心的辐射将完全被吸收,这种现象称为自蚀。1,无自吸;2,自吸;3,自蚀§7-3原子发射光谱分析仪器用来研究吸收、发射或荧光的电磁辐射强度和波长关系的仪器叫做光谱仪或分光光度计。光谱仪或分光光度计一般包括五个基本单元:光源、单色器、样品容器、检测器和读出器件。发射光谱仪结构示意图一、光源(Lightsource):光源是提供足够的能量使试样蒸发、原子化、激发,产生光谱。目前常用的光源有高温火焰、直流电弧(DCarc)、交流电弧(ACarc)、电火花(electricspark)及电感耦合高频等离子体(ICP)。1.直流电弧直流电弧的最大优点是电极头温度相对比较高(4000至7000K,与其它光源比),蒸发能力强、绝对灵敏度高、背景小;缺点是放电不稳定,且弧较厚,自吸现象严重,故不适宜用于高含量定量分析,但可很好地应用于矿石等的定性、半定量及痕量元素的定量分析。2.交流电弧与直流相比,交流电弧的电极头温度稍低一些,但弧温较高,出现的离子线比支流电弧中多。由于有控制放电装置,故电弧较稳定。广泛用于定性、定量分析中,但灵敏度稍差。这种电源常用于金属、合金中低含量元素的定量分析。3.火花由于高压火花放电时间极短,故在这一瞬间内通过分析间隙的电流密度很大(高达10000~50000A/cm2,因此弧焰瞬间温度很高,可达10000K以上,故激发能量大,可激发电离电位高的元素。由于电火花是以间隙方式进行工作的,平均电流密度并不高,所以电极头温度较低,且弧焰半径较小。这种光源主要用于易熔金属合金试样的分析及高含量元素的定量分析。4.等离子体光源等离子体是一种电离度大于0.1%的电离气体,由电子、离子、原子和分子所组成,其中电子数目和离子数目基本相等,整体呈现中性。最常用的等离子体光源是直流等离子焰(DCP)、感耦高频等离子炬(ICP)、容耦微波等离子炬(CMP)和微波诱导等离子体(MIP)等。最常见的是感耦高频等离子炬(inductivecoupledhighfrequencyplasma,ICP):感耦高频等离子炬用电感耦合传递功率,是应用较广的一种等离子光源。感耦高频等离子炬的装置,由高频发生器、进样系统(包括供气系统)和等离子炬管三部分组成。在有气体的石英管外套装一个高频感应线圈,感应线圈与高频发生器连接。当高频电流通过线圈时,在管的内外形成强烈的振荡磁场,在高频(约30兆赫)时形成的等离子炬,其形状似圆环,试样微粒可以沿着等离子炬,轴心通过,对试样的蒸发激发极为有利。这种具有中心通道的等离子炬,正是发射光谱分析的优良的激发光源。环状结构可以分为若干区,各区的温度不同,性状不同,辐射也不同。(1)焰心区感应线圈区域内,白色不透明的焰心,高频电流形成的涡流区,温度最高达10000K,电子密度高。它发射很强的连续光谱,光谱分析应避开这个区域。试样气溶胶在此区域被预热、蒸发,又叫预热区。(2)内焰区在感应圈上10~20mm左右处,淡蓝色半透明的炬焰,温度约为6000~8000K。试样在此原子化、激发,然后发射很强的原子线和离子线。这是光谱分析所利用的区域,称为测光区。测光时在感应线圈上的高度称为观测高度。(3)尾焰区在内焰区上方,无色透明,温度低于6000K,只能发射激发电位较低的谱线。ICP的分析性能:(1)检出限低(10-9~10-11g/L);(2)稳定性好,精密度、准确度高(0.5%~2%);(3)线性范围极宽4~5个数量级。(4)自吸效应、基体效应小;(5)选择合适的观测高度光谱背景小。ICP局限性:对非金属测定灵敏度低,仪器价格昂贵,维持费用较高(耗用大量Ar气)。二、光谱仪(摄谱仪Spectrograph)(见下页图)光谱仪的核心是分光系统和记录系统B★准直透镜照明系统(lightingsystem)色散系统(dispersivesystem)投影系统(projectionsystem)1.Prismspectrograph凹面镜凹面镜2.GratingspectrographIRISAdvantage中阶梯光栅分光系统(实物图)表明分光能力的指标为:(nm/mm),(nm).3.光谱检测部件在原子发射光谱法中,常用的检测方法有:目视法、摄谱法和光电法目视法用眼睛来观测谱线强度的方法称为目视法(看谱法)。这种方法仅适用于可见光波段。常用的仪器为看谱镜。看谱镜是一种小型的光谱仪,专门用于钢铁及有色金属的半定量分析。摄谱法摄谱法是用感光板记录光谱。将光谱感光板置于摄谱仪焦面上,接受被分析试样的光谱作用而感光,再经过显影、定影等过程后,制得光谱底片,其上有许多黑度不同的光谱线。然后用影谱仪观察谱线位置及大致强度,用比长仪精确确定谱线位置进行光谱定性及半定量分析。用测微光度计测量谱线的黑度,进行光谱定量分析。Phototube光电法光电法用光电倍增管、光电二极管或CCD检测器直接获得光谱线的相对强度进行定量分析。在进行光谱定性分析及观察谱片时需要使用影谱仪。一般放大倍数为20倍左右,并与标准铁光谱图进行比较得出定性结果。1.光谱投影仪(Spectrumprojector)Intherightfigure,theredrodisphotographicplate4.辅助观测设备:2.测微光度计(Microphotometer)测微光度计上具有三种读数标尺:●直线标尺,即D标尺,刻度为0~1000,相当于分光光度计上的透光度T标尺;●黑度标尺,即S标尺,刻度为∞~0,相当于分光光度计上的吸光度A标尺;●W标尺,刻度为∞~-∞。和P标尺。3.比长仪§7-4原子发射光谱定性分析一、实验步骤:1、样品处理2、光谱摄取3、谱线检查摄谱后,在暗室中进行显影、定影、冲洗,最后将干燥好的谱片放在映谱仪上进行谱线检查)二、定性分析方法1、灵敏线法:一般元素谱线的强度会随浓度的下降而消失其总数量也会同时减少,所有谱线中最后消失的谱线称“最后线”也是最灵敏线。若以此线为分析线就可以定性分析某元素。2、特征谱线法:每个元素的原子发射谱线有很多,但不同元素有不同的谱线特征,所以可以借助特征谱对元素进行定性分析。例如:§7-5原子发射光谱定量分析一、罗马金公式I=acb公式中参数:a、是与试样的蒸发、激发过程和试样组成有关的参数,它与样品处理过程和样品基底密切相关。b、是与自吸收有关的参数,称为自吸系数。lgI=blgc+lga由于系数a受测定实验条件的影响极大,所以一般在被测元素的谱线中选一条线作为分析线,在基体元素(或定量加入的其它元素)的谱线中选一条与分析线均称的谱线作为内标线(internalstandardline,或称比较线),这两条谱线组成所谓分析线对(分析线和比较线)。分析线与内标线的绝对强度的比值称为相对强度。内标法就是借测量分折线对的相对强度来进行定量分析的。这样可以使谱线强度由于光源的波动而引起的变化得到补偿。I1=a1c1b1I2=a2c2b2=a3=constantR==I1I2a1a3c1b1lgR=lg=b1lgc+lgAI1I2分析线对选择的要求:①内标元素与被测元素在光源作用下应有相近的蒸发性质;②内标元素若是外加的,必须是试样中不含或含量

1 / 68
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功