目录1设计任务与要求·························································11.1音响放大器的组成····················································11.2综合设计任务························································11.3设计音响放大器的要求················································12方案设计与论证························································22.1音响放大器各级增益的分配···········································22.2音响放大电路输入输出的阻抗匹配·····································23单元设计与参数计算·····················································33.1话筒信号放大电路···················································33.2音调控制电路·······················································43.3功率放大电路设计···················································104元件清单及总原理图·····················································114.1音响放大器的元器件列表·············································124.2音响放大器的总原理图···············································135安装与调试·····························································145.1电路布局与接线规则·················································145.2音响电路的安装·····················································145.3音响电路的调试·····················································156性能测试与分析·························································166.1音响放大器的主要参数测试···········································166.2音调电路性能及音调控制特性的测量···································167结论与心得·····························································18参考文献································································191一、设计任务与要求1.1音响放大器的组成音响放大器包括:音频信号放大器,音调混响控制器,功率放大三个组成部分。图1.11.2综合设计任务用给定元器件设计一个能对外接收高阻话筒信号、能进行音调控制调节、能对外接8Ω扬声器输出功率达1W的音响放大器。1.3设计音响放大器性能要求1)输出功率:POM≥1W扬声器阻抗ZL=8Ω采用单电源电压VCC=15V。2)输入阻抗Ri20kΩ2二、方案设计与论证2.1音响放大器各级增益的分配根据设计实验要求,音响放大整机电路可分为话放与混放级、音调控制级与功放级。根据各级的功能及性能指标要求分配电压增益如下两种方案:→→→→→话筒话放级Au1=5倍14dB混放级Au2=10倍29dB音调级Au3=1倍0dB功放级Au4=12倍22dB扬声器Au∑≈600(56dB)图2.1音响放大电路增益分配方案1的特点是:各级增益大体均分,话放级增益5dB较小,主要任务解决输入信号的阻抗匹配。音调控制级主要任务是音调调节,虽然在电位器居中时增益为零,但在增益衰减调节时为-20dB;在增益提升调节时为20dB。由于普通运放的上限频率较低,增益较高则上限频率更低,因此采用运放驱动大功率管电路可采用此增益分配。→→→→→话筒话放级Au1=7.8倍17.8dB混放级Au2=3.9倍11.8dB音调级Au3=1倍0dB功放级Au4=20倍26.6dB扬声器Au∑≈600(56dB)图2.2音响放大电路增益分配方案2的特点是:功放级电压增益较大,比较适用于集成功放电路及采用三极管驱动大功率管的功放电路。32.2音响放大电路输入输出的阻抗匹配高阻话筒的输出电阻较高,为了使电路的输入阻抗匹配,话放电路宜采用阻抗较高同相输入电路。因为音响的负载是8Ω的扬声器,在采用单电源时电源在12—15V,要求电路的输出电阻足够小,使音响能输出要求的功率。三、单元电路设计与参数计算音响设计参考单元电路分析音响放大电路设计主要包含:电话筒信号放大与混放电路、音调控制、功放电路路三大部分。3.1话筒信号放大电路由于话筒的输出信号一般只有5mV左右,而输出阻抗达到20kΩ,所以话音放大器的作用是不失真地放大声电信号。其输入阻抗应远大于话筒的输出阻抗,可采用输入阻抗较大的同相放大器。图3.1Avf=1+Rf/R2Ri=R1(R1一般取几十千欧。)LM324D32114110uF10uF12V68kΩ10kΩKey=A50%10kΩ10kΩ10kΩ10uFViVo4耦合电容C1、C3可根据交流放大器的下限频率fL来确定,一般取C1=C3=(3~10)/(2πRLfL)反馈支路的隔直电容C2一般取几微法。本设计中采用LM324四集成运算放大电路。LM324系列器件为价格便宜的带有真差动输入的四运算放大器。与单电源应用场合的标准运算放大器相比,它们有一些显著优点。该四放大器可以工作在低到3.0伏或者高到32伏的电源下,静态电流为MC1741的静态电流的五分之一。共模输入范围包括负电源,因而消除了在许多应用场合中采用外部偏置元件的必要性。它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。管脚连接图如下图图3.253.2音调控制电路音响放大器的主要特性体现在音调控制电路上,这也是其与通用放大器的区别。音调控制主要是控制预调音响放大器的幅频特性。调控制器的电路图如图3所示。运算放大器选用单电源供电的四运放LM324,其中RP33称为音量控制电位器,其滑臂在最上端时,音响放大器输出最大功率。图3.3,音调控制曲线图3.4,音调控制音调控制器的作用是控制、调节音响放大器输出频率的高低,控制曲线如图3.3中折线所示。图中,f0=1kHZ——中音频率,要求增益Av0==0dB;fL1——低半频转折频率,一般为几十赫兹;fL2=10fL1——中音频转折频率;fH1——中音频率转折频率;fH2=10fH1——高音频转折频率,一般为几十千赫兹。由图可见,音调控制器只对低音频或高音频的增益进行提升或衰减,中音频增益保持不变。所以音调控制器的电路由低通滤波器与高通滤波器共同组成。常见电路有专用集成电路,如五段音调均衡器LA3600,外接发光二级管频段显示器后,可以看见各个频段的增益提升与衰减变化。在高中档收录机、汽车音响等设6备中广泛采用集成电路音调控制器。也有用运算放大器构成的音调控制器,如图3.4所示。这种电路调节方便,元器件较少,在一般收录机、音响放大器中应用较多。下面分析该电路的工作原理。设电容C1=C2C3,在中、低音频区,C3可视为开路,在中、高音频区,C1、C2可视为短路。(a)低频提升(a)低频衰减图3.5,音调控制器的低频等效电路①当ff0时,音调控制器的低频等效电路如图3.5所示,其中(a)为RP1的滑臂在最左端,对应于低频提升最大的情况,(b)为RP1滑臂在最右端,对应于低频衰减最大的情况。分析表明,图(a)所示电路是一个一阶有源低通滤波器,其传输函数的表达式为À(jw)=UiUo=-12121/1/1jjRRRP(2)式中,1=1/RP1C2或fL1=1/2RP1C2(3)2(RP1+R2)/RP1R2C2或fL2=(RP1+R2)/2RP1R2C2(4)ffL1时,C2可视若无睹为开路,运算放大器的反向输入端入(a)viC2R4R1RP1R2vo-+(b)viC1R4R1RP1R2vo-+7端视为虚地,R4的影响可以忽略,此时电压增益AvL为AvL=(RP1+R2)/R1(5)f=fL1时,因为fL2=10fL1,由式(2)得ÀV1=-jjRRRP11.01121模AV1=(RP1+R2)/2R1=AvL/2(6)此时,电压增益ÀV1相对于AvL下降了3dB。f=fL2时,由式(2)得ÀV2=-jjRRRP1011121模ÀV2=102121RRRP=0.14AvL(7)此时电压增益相对AvL下降17dB。fL1fLxfL2的范围内,电压增益的的衰减速率为-20dB/10倍频(或-6dB/倍频)。同理可以得出图(b)所示电路的相应表达式,其增益相对于中步为衰减量。音调控制器低频时的幅频持性如图3.3中左半部分的虚线所示。图3.6,音调控制器的高频等效电路图3.7,图3.6的等效电路viC3R3RaRbvo-+RP2RcviC3R3R1R2R4vo-+RP28②ff0时,音调控制器的高频等效电路如图3.6所示,由于此时C1、C2视为短路,R4与R1、R2组成星形连接,将其转换成三角形连接后的电路如图9所示,电阻的关系式为Ra=R1+R4+(R1R4/R2)Rb=R4+R2+(R4R2/R1)(8)Rc=R2+R1+(R2R1/R4)若取R1=R2=R4,则式(8)为Ra=Rb=Rc=3R1=3R2=3R4(9)图3.7的高频等到效电路如图3.8所示,其中(a)为RP2的滑臂在最左端时,对应于高频提升最大的情况,(b)为RP2的滑臂在最右端时,对应于高频衰减最大的情况。分析表明,图(a)所示电路为一阶有源高通滤波器,其传输函数的表达式为À(j)=UiUo=-43/1/1jjRaRb(10)(a)高频提升(b)高频衰减图3.8,图3.7的高频等效电路viC3R3RaRb-+vovoRb-+viRaR3C39式中,3=1/(Ra+R3)C3或fH1=1/2(Ra+R3)C3(11)4=1/R3C3或fH2=1/2R3C3(12)与分析低频的方法相同,得到下列关系式:ffH1时,C3视为开路,此时电压增益为Avo=1(0dB).f=fH1时,Av3=2Avo=1.4(2.9dB)(13)f=fH2时,Av4=210Avo=7.1(17dB)(14)ffH2时,C3视为短路,此时电压增益为AvH=(Ra+R3)/R3(15)fH1fHxfH2的范围内,电压增益提升的速率为20dB/10倍频,同理可以得出图(b)所示电路的相应表达式,其增益相对于中频为衰减量。音调控制器高频时的幅频持性如图3.3中右半部分的虚线所示。实际应用中,通常是给出低频区fLx和高频区fHx处的提升量或衰减量x(dB),再根据下式求出转折频率fL2(fL1)和fH1(fH2),即fL2=fLx·2