第1页生物的新陈代谢Ⅰ植物代谢部分:酶与ATP、光合作用、水分代谢、矿质营养、生物固氮2.1酶的分类2.2酶促反应序列及其意义酶促反应序列生物体内的酶促反应可以顺序连接起来,即第一个反应的产物是第二个反应的底物,第二个反应的产物是第三个反应的底物,以此类推,所形成的反应链叫酶促反应序列。如意义各种反应序列形成细胞的代谢网络,使物质代谢和能量代谢沿着特定路线有序进行,确定了代谢的方向。2.3生物体内ATP的来源ATP来源反应式光合作用的光反应ADP+Pi+能量——→ATP化能合成作用有氧呼吸无氧呼吸其它高能化合物转化(如磷酸肌酸转化)C~P(磷酸肌酸)+ADP——→C(肌酸)+ATPABCD酶1酶2酶3终产物……酶4酶n(蛋白质本质)(核酸本质)蛋白质类酶RNA类酶单纯酶复合酶仅含蛋白质蛋白质辅助因子离子有机物辅酶NADP(辅酶Ⅱ)B族维生素生物素(羧化酶的辅酶)RNA端粒酶含RNA唾液淀粉酶含Cl-细胞色素氧化酶含Cu2+分解葡萄糖的酶含Mg2+如胃蛋白质酶酶存在于低等生物中,将RNA自我催化。对生命起源的研究有重要意义。酶酶第2页2.4生物体内ATP的去向2.5光合作用的色素2.6光合作用中光反应和暗反应的比较比较项目光反应暗反应反应场所叶绿体基粒叶绿体基质能量变化光能——→电能电能——→活跃化学能活跃化学能——→稳定化学能物质变化H2O——→[H]+O2NADP++H++2e——→NADPHATP+Pi——→ATPCO2+NADPH+ATP———→(CH2O)+ADP+Pi+NADP++H2O反应物H2O、ADP、Pi、NADP+CO2、ATP、NADPH反应产物O2、ATP、NADPH(CH2O)、ADP、Pi、NADP+、H2O反应条件需光不需光反应性质光化学反应(快)酶促反应(慢)反应时间有光时(自然状态下,无光反应产物暗反应也不能进行)神经传导和生物电肌肉收缩吸收和分泌合成代谢生物发光光合作用的暗反应细胞分裂矿质元素吸收新物质合成植株的生长植物动物ATP——→ADP+Pi+能量酶色素分布分离(橙黄色)胡萝卜素(黄色)叶黄素(蓝绿色)叶绿素a(黄绿色)叶绿素b快慢作用吸收传递光能胡萝卜素叶黄素大部分叶绿素a叶绿素b吸收转化光能特殊状态的叶绿素a组成类胡萝卜素叶绿素叶绿素a叶绿素b胡萝卜素叶黄素叶绿体基粒的类囊体薄膜上第3页2.7C3植物和C4植物光合作用的比较C3植物C4植物光反应叶肉细胞的叶绿体基粒叶肉细胞的叶绿体基粒暗反应叶肉细胞的叶绿体基质维管束鞘细胞的叶绿体基质CO2固定仅有C3途径C4途径—→C3途径2.8C4植物与C3植物的鉴别方法方法原理条件和过程现象和指标结论生理学方法在强光照、干旱、高温、低CO2时,C4植物能进行光合作用,C3植物不能。密闭、强光照、干旱、高温生长状况:正常生长或枯萎死亡正常生长:C4植物枯萎死亡:C3植物形态学方法维管束鞘的结构差异过叶脉横切,装片①是否有两圈花细胞围成环状结构②鞘细胞是否含叶绿体是:C4植物否:C3植物化学方法①合成淀粉的场所不同②酒精溶解叶绿素③淀粉遇面碘变蓝叶片脱绿→加碘→过叶脉横切→制片→观察出现蓝色:①蓝色出现在维管束鞘细胞②蓝色出现在叶肉细胞出现①现象时:C4植物出现②现象时:C3植物2.9C4植物中C4途径与C3途径的关系注:磷酸烯醇式丙酮酸英文缩写为PEP。草酰乙酸(C4)苹果酸C4丙酮酸C3磷酸烯醇式丙酮酸(C3)ATPPEP羧化酶AMPNADP+NADPHCO2苹果酸C4丙酮酸C3NADP+NADPHCO2暗反应(CH2O)叶肉细胞维管束鞘细胞C5第4页2.10C4植物比C3植物光合作用强的原因C3植物C4植物结构原因:维管束鞘细胞的结构以育不良,无花环型结构,无叶绿体。光合作用在叶肉细胞进行,淀粉积累,影响光合效率。发育良好,花环型,叶绿体大。暗反应在此进行。有利于产物运输,光合效率高。生理原因:PEP羧化酶磷酸核酮糖羧化酶只有磷酸核酮糖羧化酶。磷酸核酮糖羧化酶与CO2亲和力弱,不能利用低CO2。两种酶均有。PEP羧化酶与CO2亲和力大,利用低CO2能力强。2.11光能利用率与光合作用效率的关系2.12影响光合作用的外界因素与提高光能利用率的关系影响光合作用的外界因素提高光能利用率增加二氧化碳供应通风透光,增施农家肥;人工增CO2(温室)必需矿质元素供应N:P:K:糖类的合成和运输Mg:叶绿素的成分ATP、NADP+的成分控制光照强弱因地制宜:阳生植物种阳地阴生植物种阴地光质影响:蓝紫光照,蛋白质和脂类多红光照,糖类增多延长光合作用时间提高复种指数:改一年一季为一年多季增加光合作用面积合理密植套种(不同时播种)、间作(同时播种)光CO2矿物质水温度关系提高光能利用率延长光合作用时间增加光合作用面积提高光合作用效率控制光照强弱二氧化碳供应必需矿质元素供应光合作用效率光合作用制造的有机物所含的能量光合作用吸收的光能=参与光合作用的能量中被转移的能量光能利用率照在该地面的总的光能光合作用制造的有机物所含的能量=照在地面上的总能量中被转移的能量概念热能损失光能损失→荧光、磷光光能→电能→化学能(贮存)去向第5页2.13光合作用实验的常用方法2.14植物对水分的吸收和利用2.14.1植物对水分的吸收半叶法(遮盖法)割主叶脉法同位素标记法验证(探索)光合作用需CO2并放O2、光强的影响光合作用产生淀粉验证(探索)光合作用中物质的转变打孔法(抽气法)密封法光质对光合作用的影响分光法可同时使用渗透吸水渗透系统隔着半透膜的两种溶液构成的体系吸胀吸水液泡尚未形成或消失通过亲水物质的亲水性吸水植物细胞构成渗透系统原生质层由细胞膜、液泡膜、两膜之间的细胞质构成看作一层半透膜(本质是选择透过性)两个系统①植物细胞与土壤溶液之间构成②每两个植物细胞之间构成水分的吸收吸水原理主要由成熟细胞的中央液泡构成渗透系统通过渗透作用吸水发生条件①具有半透膜②膜两侧溶液具有浓度差溶液与纯水达平衡时,溶液一方所承受的外压差。渗透压第6页2.14.2扩散作用与渗透作用的联系与区别2.14.3半透膜与选择透过性膜的区别与联系半透膜选择透过性膜概念小分子、离子能透过,大分子不能透过水自由通过,被选择的离子和其它小分子可以通过,大分子和颗粒不能通过性质半透性(存在微孔,取决于孔的大小)选择透过性(生物分子组成,取决于脂质、蛋白质和ATP)状态活或死活材料合成材料或生物材料生物膜(磷脂和蛋白质构成的膜)物质运动方向不由膜决定,取决于物质密度水和亲脂小分子:不由膜决定,取决于物质密度离子和其它小分子:膜上载体(蛋白质)决定功能渗透作用渗透作用和其它更多的生命活动功能共同点水自由通过,大分子和颗粒都不能通过2.14.4植物体内水分的运输2.14.5植物体内水分的利用和散失导管运输水分的运输方向向上:根—→茎—→叶动力蒸腾作用产生蒸腾拉力根压导致吐水现象利用1-5%参与光合作用、呼吸作用等生命活动水分散失绝大部分水分通过蒸腾作用散失生理意义蒸腾作用①根持续吸水的动力②物质运输的载体③降低叶片温度扩散作用渗透作用物质由相对多(密度高)的地方向相对少(密度低)的地方运动的过程,叫扩散溶剂分子的扩散叫渗透,具备一定条件才能发生联系区别物质由高到低的移动方式,利用物质本身的属性,不需要能量特指溶剂分子(如水、酒精等)的扩散,需特定的条件第7页2.15植物体内的化学元素(1)1.16植物体内的化学元素(2)植物体水分(10-95%)干物质(5-90%)有机物90%无机盐10%挥发部分灰分元素小部分N大部分S全部P全部金属元素C、H、O、N、S形成气体:CO2、CO、N2、NH3、H2O和氮氧化物等。少量硫形成H2S、SO2等。燃烧N、P、S、K、Ca、Mg(6种)大量元素微量元素必需矿质元素Fe、Mn、B、Zn、Cu、Mo、Cl、Ni矿质元素Al、Si、Na、I等非必需矿质元素概念除C、H、O外由根系吸收的元素(N放在矿质元素中讨论)非必需元素必需元素微量元素大量元素植物体C、H、O非矿质元素能被再利用的元素N、P、K、Mg老叶先受损不被再利用的元素Ca、S、B、缺乏症幼叶先受损吸收方式选择性吸收载体的种类与数量主动运输第8页2.17生物固氮2.18氮循环2.19三类微生物在自然界氮循环中的作用生物固氮将大气氮(N2)还原成NH3的过程概念意义②对自然界氮循环有重要作用①为绿色植物提供氮素营养固氮微生物的种类种类固氮原因及条件代谢类型常见类型在生态系统中的作用同化异化共生固氮类与豆科植物共生时异养需氧根瘤菌(6种)(大豆、菜豆、豌豆、苜蓿、羽扇豆、三叶草)消费者(取食于活的生物体)自生固氮类独立生活自养固氮蓝藻(念珠藻)生产者异养圆褐固氮菌黄色分支杆菌分解者(腐生生活)注意:不同的根瘤菌具有共生专一性。如蚕豆根瘤菌与蚕豆、豌豆、豇豆共生;大豆根瘤菌只能与大豆共生。固氮过程N2+e+H++ATP————→NH3+ADP+Pi固氮酶(选学)固氮基因(固氮酶)大气氮库(N2)大气固氮工业固氮NO3-氮素化肥氮盐尿素硝化细菌分解者生物固氮NH3-NO2-、NO3-反硝化细菌N2遗体生产者消费者脲酶尿素脲酶固氮微生物N2————→NH3固氮酶硝化细菌NH3——→NO2-、NO3-酶反硝化细菌NO2-、NO3-——→N2酶(N2循环)第9页Ⅱ动物与微生物代谢部分:三大类营养代谢、细胞呼吸、代谢基本类型、微生物类群、微生物的营养代谢与生长、发酵工程简介2.20人和动物体内三大营养物质的代谢2.21人体的必需氨基酸淀粉葡萄糖脂肪、某些氨基酸CO2+H2O+能量肝糖元肌糖元氧化合成分解转变合成皮下结缔组织、肠系膜脂肪储存甘油、脂肪酸CO2+H2O+能量氧化糖元转变分解蛋白质合成转变各种组织蛋白、酶及激素等新的氨基酸含氮部分NH3尿素转变不含氮部分CO2+H2O+能量糖类、脂肪分解转氨基脱氨基氨基酸必需氨基酸在人和动物体细胞内能够合成的氨基酸非必需氨基酸不能在人和动物体细胞内合成,只能从食物中获得的氨基酸称为必需氨基酸种类(8种)种类苯丙赖色亮,缬亮苏甲硫(本秉赖色亮,谢亮输贾刘)12种概念概念苯丙..氨酸赖.氨酸色.氨酸亮.氨酸缬.氨酸异亮.氨酸苏.氨酸甲硫..氨酸不同种动物有不同的必需氨基酸助记词第10页2.22细胞的有氧呼吸2.23细胞内的无氧呼吸②2C3H6O32C2H5OH2CO24[H]能量2CH3COCOOH+C6H12O6②①(葡萄糖)(酒精)(乳酸)(丙酮酸)ATP(少)热总反应式C6H12O6+能量2C3H6O3酶C6H12O62C2H5OH2CO2+酶能量+总反应式细胞质基质线粒体6CO220[H]C6H12O64[H]能量6H2OATP(少)热C6H12O62CH3COCOOH12H2OATP(多)6O2能量热呼吸链ATP(少)热能量2CH3COCOOH②①③(葡萄糖)(丙酮酸)细胞质基质线粒体细胞膜第11页2.24有氧呼吸与无氧呼吸的比较比较项目有氧呼吸无氧呼吸反应场所真核细胞:细胞质基质,主要在线粒体原核细胞:细胞基质(含有氧呼吸酶系)细胞质基质反应条件需氧不需氧反应产物终产物(CO2、H2O)、能量中间产物(酒精、乳酸、甲烷等)、能量产能多少多,生成大量ATP少,生成少量ATP共同点氧化分解有机物,释放能量2.25呼吸作用产生的能量的利用情况呼吸类型被分解的有机物储存的能量释放的能量可利用的能量能量利用率有氧呼吸1mol葡萄糖2870kJ2870kJ1165kJ40.59%无氧呼吸2870kJ196.65kJ61.08kJ2.13%注:无氧呼吸释放的能量值为分解为乳酸时的值。不同的无氧呼吸类型释放的能量可能稍有不同。2.26新陈代谢的类型你知道吗科学发现:人们对消化过程的研究发现了酶人们对向光性的研究发现了生长素人们对溶菌现象的研究发现了青霉素绿色植物光合细菌基本类型新陈代谢类型兼性厌氧型异化类型需氧型厌氧型同化类型自养型异养型光能自养型化能自养型兼性营养型酵母菌有光时:自养生活(进行光合作用,但供氢体不是水,而是有机物)无光时:异养生活红螺细菌有氧时:有氧呼吸无氧时:无氧呼吸硝化细