应用题复习应用题的解法很多,以下几种:1)列表法2)图示法3)演示法4)实践法设未知数的技巧:1、设直接未知数,即求什么设什么。2、设间接未知数。3、设辅助未知数,即“设而不求”在列方程解决实际问题的过程应注意哪些问题?(1)设未知数时,要仔细分析问题中的数量关系,找出题中的已知条件和未知数,一般采用直接设法,有些问题可用间接设法,要注意未知数的单位,不要漏写。(2)找等量关系时,可借助图表分析题中的数量关系,列出两个代数式,使它们都表示一个相等或相同的量。(3)列方程时,要注意方程各项是同类量,单位要一致,方程左右两边应是等量。(4)解出方程的解后,要验证它的合理性,再解释它的意义,并要注意单位。(5)在解决实际问题的过程中,你是怎样判断一个方程的解是否合理?请举例说明。一、日历中的方程(找规律解方程)例1如图某月日历,如果用正方形所圈出4个数的和是76,这4天分别是几号?日一二三四五六123456789101112131415161718192021222324252627282930问题:日历中阴影中的9个数的和能等于136吗?11、13、25、27如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;(1)填表:剪的次数12345正方形个数(2)如果剪n次,共剪出多少个小正方形?(3)如果共剪出301个小正方形,则剪了几次?47101316(1)结合图形,不难发现:在4的基础上,依次多3个.即剪n次,共有4+3(n﹣1)=3n+1.(2)根据图形,还可以发现:每个小正方形的边长都是上一次的一半,面积是上一次的正方形的面积的.如果剪了100次,共剪出3×100+1=301个小正方形;(3)如果剪了n次,共剪出3n+1个小正方形;有一些分别标有6,12,18,24,30,36,…..的卡片,小明从中任意拿到了相邻的3张卡片,发现这些卡片上的数字的和为342猜猜小明拿到了哪3张卡片?小明能否拿到相邻的3张卡片,使得它们的和为86?说明理由?(1)小明拿到的三张卡片分别是:108,114,120.这三张卡片加起来是342.(2)小明不能拿到数字之和等于86的三张相邻卡片.因为6,12,18,24等数字的特点都是6的倍数,它们中间任何几位数之和相加也必定是6的倍数.86不是6的倍数,所以,相邻3张卡片数字之和不可能是866个人围成一圈,每人心里想一个数,并把这个数告诉左、右两个人,然后每一个人把左、右两个相邻人告诉自己的数的平均数亮出来,如图,问亮出11的人原来心中想的那个数是多少?41181079亮出的数依次为11108497设亮出数11的人原来心中想的数为x,亮9的人想的是(7*2-x)=14-x;亮8的人想的是(10*2-x)=20-x.[(14-x)+(20-x)]/2=4x=13如图:一个长方形被划分成6个正方形,已知中间的最小的正方形面积为1平方厘米,求这个正方形的面积DcBAA二、等积变形及比例、调配内容:(1)等积问题:变形前的体积=变形后的体积。例题1:要锻造一个半径为5cm,高为8cm的圆柱形毛坯,应截取截面半径为4cm的圆钢多长?例题2:直径为30cm,高为50cm的圆柱形瓶里放满了饮料,现把饮料倒入底面直径为10cm的圆柱形小杯,刚好倒满30杯,求小杯的高解:设应截取半径为4㎝的钢X㎝,根据圆柱体体积相等,有方程:π×5²×8=π×4²×X200π=16πXX=25/2答:应截取半径是4㎝的钢25/2㎝解:设小杯高为x厘米【π取3.14】π×15^2×50=π×(10÷2)^2•x×2035325=1570xx=22.5例题:用一根长为10米的铁丝围成一个长方形,(1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?设长为x,宽为yx-y=1.42x十2y=10得x=3.2y=1.8例1:甲仓库有存粮120吨,乙仓库有存粮食80吨,现从甲库调部分到乙库,若要求调运后甲库的存粮是乙库的三分之二,问应从甲库调多少吨粮食到乙库?例2:某公司原有职员60名,其中女职员占20%,今年又有几位男职员辞职,公司又补招了3名女职员,女职员的比例提高到25%,问公司离开公司的男职员一共有几人?设应调X吨。(120-X)*3=(80+X)*2解得X=40T原人数:60/0.2=300人现人数:63/0.25=252252人中,有63名女,男189原男人数:300-60=240240-189=51设离开X位男职员,总人数为YY=60/0.263/(Y-X+3)=0.25X=300-252+3=51人甲、乙两个仓库要向A、B两地运送水泥,已知甲仓库可调100吨水泥乙仓库可调水泥80吨,A地需70吨水泥,B地需110吨水泥,两仓库到A,B两地的路程和运费如下表路程(千米)运费(元/千米.吨)甲仓库乙仓库甲仓库乙仓库A地B地202525201210128(1)设甲仓库运往A地水泥x吨,试用x的一次式表示总运费W?(2)你能确定当甲、乙两仓库各运往A,B多少吨水泥时,总运费461000元?最省的总运费是多少?由图表可知,甲仓库到A地的路费为20×12=240元,甲仓库到B地的路费为25×10=250元,乙仓库到A地的路费为15×12=180元,乙仓库到B地的路费为20×8=160元.设甲仓库向A地运送水泥x吨,则向B地运送(100-x)吨,乙仓库向A地运送水泥(70-x)吨,向B地运送水泥[110-(100-x)]=(10+x)吨,根据题意得240x+250(100-x)+180(70-x)+160(10+x)=37100,解得x=70.答:要想运费正好是37100元,调运方案是:甲仓库向A地运送水泥70吨,则向B地运送30吨,乙仓库向A地运送水泥0吨,向B地运送水泥80吨.2、比例分配应用题例1、我国四大发明之一的黑火药是用硝酸钠、硫磺、木炭三种,原料按15:2:3的比例配制而成,现要配制这种火药150公斤,则这三种原料各需要多少公斤?解:设需要硝酸钠15x公斤,硫磺2x公斤,木炭3x公斤依题意得:15x+2x+3x=150x=7.515x=15×7.5=112.52x=2×7.5=153x=3×7.5=22.5答:硝酸钠应取112.5公斤,硫磺取15公斤,木炭应取22.5公斤。设元是间接设元,一般设其中的一份为x,必要时要求连比相等关系一般是总量等于部分量的和或找题中的话,也可以是整个题中始终不变的量按比例分配的应用题的设元和找相等关系各有什么特点?三、行程问题一、明确行程问题中三个量的关系三个基本量关系是:速度×时间=路程分析方法辅助手段:线型图示法分析方法辅助手段:线型图示法相遇问题:甲的路程+乙的路程=全程追及问题:(1)同地不同时:慢者行程+先行路程=快者路程(2)同时不同地:快者路程—慢者行程=间隔距离1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?解:设开x小时。48x+60x=162108x=162x=1.5解:设开x小时。48x+60x=270x=2.5解:设开x小时。48(x+60)+60x=162解:x个小时。48x+162=60x解:x小时。60x-48x=20012x=200x≈17快车在后面追慢车,快车比慢车多走了162km,设时间为a则方程:60a-48a=162→a=13.52:从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?解:设水路长为x千米,则公路长为(x+40)千米等量关系:船行时间-车行时间=3小时答:水路长240千米,公路长为280千米,车行时间为7小时,船行时间为10小时依题意得:14032440xxx+40=280,2802407,104024x=2403.某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?等量关系:小王所行路程=连队所行路程答:小王能在指定时间内完成任务。解:设小王追上连队需要x小时,则小王行驶的路程为14x千米,连队所行路程是千米18(66)60x依题意得:18146660xx940x913.540小时分钟15分钟4.一列客车和一列货车在平行的轨道上同向行驶,客车的长是200米,货车的长是280米,客车的速度与货车的速度比是5:3,客车赶上货车的交叉时间是1分钟,求各车的速度;若两车相向行驶,它们的交叉时间是多少分钟?解:设客车的速度是5x米/分,货车的速度是3x米/分。依题意得:5x–3x=280+200x=2405x=1200,3x=720设两车相向行驶的交叉时间为y分钟。依题意得:1200y+720y=280+200y=0.255:一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离?等量关系:顺风时飞机行驶的路程=逆风时飞机行驶的路程。答:两城之间的距离为3168公里注:飞行问题也是行程问题。同水流问题一样,飞行问题的等量关系有:顺风飞行速度=飞机本身速度+风速逆风飞行速度=飞机本身速度-风速5.5(x+24)=6(x-24)解得:x=552解:静风的速度为x公里/小时,由题意得:∴6(x-24)=3168练习1、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么经过2分钟他们两人就要相遇。如果2人从同一地点同向而行,那么经过20分钟两人相遇。如果甲的速度比乙的速度快,求两人散步的速度?等量关系:甲行的路程-乙行的路程=环形周长注:同时同向出发:快车走的路程-环行跑道周长=慢车走的路程(第一次相遇)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)设甲的速度为X米/分钟,乙的速度为Y米/分钟2X+2Y=40020X-20Y=400X=110Y=90练习2、甲乙两人从同一村庄步行去县城,甲比乙早1小时出发,而晚1小时到达,甲每小时走4千米,乙每小时走6千米,求村庄到县城的距离?设村庄到县城的路程为a千米,则:甲用时a/4小时,乙用时a/6小时已知甲比乙多花2小时,即a/4-a/6=2a/4-a/6=2a*(3-2)/12=2a=24千米3、两地相距28公里,小明以15公里/小时的速度。小亮以30公里/小时的速度,分别骑自行车和开汽车从同一地前往另一地,小明先出发1小时,小亮几小时后才能追上小明?解:设小亮开车x小时后才能追上小明,则小亮所行路程为30x公里,小明所行路程为15(x+1)等量关系:小亮所走路程=小明所走路程依题意得:30x=15(x+1)x=1检验:两地相距28公里,在两地之间,小亮追不上小明四、工程问题中的数量关系:1)工作效率=工作总量完成工作总量的时间———————————2)工作总量=工作效率×工作时间3)工作时间=工作总量—————工作效率4)各队合作工作效率=各队工作效率之和5)全部工作量之和=各队工作量之和例1.修筑一条公路,甲工程队单独承包要80天完成,乙工程队单独承包要120天完成.1)现在由两个工