基于DS1302数字时钟电路的设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

基于DS1302数字时钟电路的设计11引言从古代的滴漏更鼓到近代的机械钟,从电子表到目前的数字时钟,为了准确的测量和记录时间,人们一直在努力改进着计时工具。钟表的数字化,大力推动了计时的精确性和可靠性。在单片机构成的装置中,实时时钟是必不可少的部件。目前常用的实时时钟,很多采用单片机的中断服务来实现,这种方式一方面需要采用计数器,占用硬件资源,另一方面需要设置中断、查询等,同样耗费单片机的资源,而且某些测控系统可能不允许;有的则使用并行接口的时钟芯片,如MC146818、DS12887等,它们虽然能满足单片机系统对实时时钟的要求,但是这些芯片与单片机接口复杂,占用地址、数据总线多,芯片体积大,占用空间多,给其它设计带来诸多不便。本设计选取串行接口时钟芯片DS1302与单片机同步通信构成数字时钟电路。其简单的三线接口能为单片机节省大量资源,DS1302的后背电源及对后背电源进行涓细电流充电的能力保证电路断电后仍能保存时间和数据信息等。这些优点解决了目前常用的实时时钟所无法解决的问题。该时钟电路强大的功能和优越的性能,在很多领域的应用中,尤其是某些自动化控制、长时间无人看守的测控系统等对时钟精确性和可靠性有较高要求的场合,具有很高的使用价值。2核心芯片简介2.1DS1302简介DS1302[1]是美国DALLAS公司推出的一种高性能、低功耗、带RAM的实时时钟芯片,它可以对年、月、日、周日、时、分、秒进行计时,且具有闰年补偿功能,工作电压宽达2.5~5.5V。时钟可工作在24小时格式或12小时(AM/PM)格式。DS1302与单片机的接口使用同步串行通信,仅用3条线与之相连接。可采用一次传送一个字节或突发方式一次传送多个字节的时钟信号或RAM数据。DS1302内部有一个31×8的用于临时性存放数据的RAM寄存器。DS1302是DS1202的升级产品,与DS1202兼容,但增加了主电源/后背电源双电源引脚,同时提供了对后背电源进行涓细电流充电的能力。2.1.1DS1302引脚功能与内部结构DS1302的引脚功能如表1所示,外形及内部结构如图1所示[2]:核心芯片简介2引脚号引脚名称功能1VCC2主电源2、3X1、X2振荡源,外接32768Hz晶振4GND地线5RST复位/片选线6I/O串行数据输入/输出端(双向)7SCLK串行时钟输入端8VCC1后备电源表1DS1302引脚功能表图1DS1302管脚图及内部结构图2.1.2DS1302的控制字DS1302的控制字节如图2所示:765432101RAMCKA4A3A2A1A0RAMK图2DS1302控制字节的含义基于DS1302数字时钟电路的设计3控制字节的最高有效位(位7)必须是逻辑1,如果它为0,则不能把数据写入到DS1302中。位6如果为0,则表示存取日历时钟数据,为1表示存取RAM数据;位5至位1指示操作单元的地址;最低有效位(位0)如为0表示要进行写操作,为1表示进行读操作,控制字节总是从最低位开始输出。2.1.3DS1302的复位引脚通过把RST输入驱动置高电平来启动所有的数据传送。RST输入有两种功能:首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供了终止单字节或多字节数据的传送手段。当RST为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。如果在传送过程中置RST为低电平,则会终止此次数据传送,并且I/O引脚变为高阻态。上电运行时,在Vcc≥2.5V之前,RST必须保持低电平。只有在SCLK为低电平时,才能将RST置为高电平。2.1.4DS1302的数据输入输出在控制指令字输入后的下一个SCLK时钟的上升沿时数据被写入DS1302,数据输入从低位即位0开始。同样,在紧跟8位的控制指令字后的下一个SCLK脉冲的下降沿读出DS1302的数据,读出数据时从低位0位至高位7,数据读写时序如图3所示:图3数据读写时序2.1.5DS1302的寄存器DS1302共有12个寄存器,其中有7个寄存器与日历、时钟相关,存放的数据位为BCD码形式。其日历、时间寄存器及其控制字见表2。765410765432101A4A3A2A1DATAI/OBYTE2DATAI/OBYTE1R/CA0R/WI/ORSTSCLK核心芯片简介4此外,DS1302还有年份寄存器、控制寄存器、充电寄存器、时钟突发寄存器及与RAM相关的寄存器等。时钟突发寄存器可一次性顺序读写除充电寄存器外的所有寄存器的内容。DS1302与RAM相关的寄存器分为两类,一类是单个RAM单元,共31个,每个单元组态为一个8位的字节,其命令控制字为C0H--FDH,其中奇数为读操作,偶数为写操作;再一类为突发方式下的RAM寄存器,此方式下可一次性读写所有的RAM的31个字节,命令控制字为FEH(写)、FFH(读)。寄存器名命令字取值范围各位内容写操作读操作76543210秒寄存器80H81H00--59CH10SECSEC分寄存器82H83H00--59010MINMIN时寄存器84H85H01-12或00-2312/24010HRHR日寄存器86H87H01-28,29,30,310010DATEDATE月寄存器88H89H01--1200010MMONTH周寄存器8AH8BH01--0700000DAY年寄存器8CH8DH00--9910YEARYEAR表2DS1302的日历、时钟寄存器及其控制字2.2AT89S51简介AT89S51[3]美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4KBytesISP(In-systemprogrammable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及AT89C51引脚结构,芯片内集成了通用8位中央处理器和ISPFlash存储单元。单片机AT89S51强大的功能可为许多嵌入式控制应用系统提供高性价比的解决方案。2.2.1AT89S51芯片的引脚及特点图4AT89S51引脚图AT89S51芯片的引脚结构如图4所示:(1)功能特性概括:基于DS1302数字时钟电路的设计5AT89S51提供以下标准功能:40个引脚、4KBytesFlash片内程序存储器、128Bytes的随机存取数据存储器(RAM)、32个外部双向输入/输出(I/O)口、5个中断优先级2层中断嵌套中断、2个数据指针、2个16位可编程定时/计数器、2个全双工串行通信口、看门狗(WDT)电路、片内振荡器及时钟电路。此外,AT89S51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲模式下,CPU暂停工作,而RAM、定时/计数器、串行通信口、外中断系统可继续工作。掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。(2)管脚说明:VCC:供电电压。GND:接地。P0口:P0口为一个8位漏级开路双向I/O口,也即地址/数据总线复用口。作为输出口用时,能驱动8个TTL逻辑门电路。对端口写“1”时,被定义为高阻输入。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。P1口:P1口是一个带内部上拉电阻的8位双向I/O口,P1口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在Flash编程和程序校验期间,P1接收低8位地址。部分端口还有第二功能,如表3所示:端口引脚第二功能P1.5MOSI(用于ISP编程)P1.6MISO(用于ISP编程)P1.7SCK(用于ISP编程)表3P1口部分引脚第二功能P2口:P2口是一个带有内部上拉电阻的8位双向I/O口,P2口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电核心芯片简介6平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。在访问8位地址的外部数据寄存器(例如执行MOVX@Ri指令)时,P2口线上的内容(也即特殊功能寄存器(SFR)区中P2寄存器的内容),在整个访问期间不改变。在Flash编程或校验时,P2亦接收高位地址和其它控制信号。P3口:P3口是一个带有内部上拉电阻的双向8位I/O口,P3口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对P3口写“1”时,它们被内部的上拉电阻拉高并可作为输入端口。作输入口使用时,被外部信号拉低的P3口将用上拉电阻输出电流(IIL)。P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如表4所示:P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。端口引脚第二功能P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.20INT(外中断0)P3.3INT1(外中断1)P3.4T0(定时/计数器0)P3.5T1(定时/计数器1)P3.6WR(外部数据存储器写选通)P3.7RD(外部数据存储器读选通)表4P3口引脚第二功能RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上的高电平时间将使单片机复位。WDT溢出将使该引脚输出高电平,设置SFRAUXR的DISRTO位(地址8EH)可打开或关闭该功能。DISRTO位缺省为RESET输出高电平打开状态。ALE/PROG:当访问外部存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。即使不访问外部寄存器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。值得注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。基于DS1302数字时钟电路的设计7如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只要一条MOVX和MOVC指令才会激活ALE。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。PSEN:程序存储允许(PSEN)输出是外部程序存储器的读选通信号,当AT89S51由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。当访问外部数据存储器时,没有两次有效的PSEN信号。EA/VPP:外部访问允许。欲使CPU仅访问外部程序存储器(地址为0000H-FFFFH),EA端必须保持低电平(接地)。需要注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端保持高电平(接VCC端),CPU则执行内部程序存储器中的指令。Flash存储器编程期间,该引脚用于施加+12V编程电压(VPP)。XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入端。XTAL2:反向振荡放大器器的输出端。(3)晶体振荡器特性:AT89S51中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为该反向放大器的输入端和输出端。这个反向放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器。外接石英晶体(或陶瓷谐振器)及电容C1、C2接在放大器的反馈回路中构成并联振荡电路。对外接电容C1、C2虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程度及温度稳定性。如果使用石英晶体,电容应该使用30pF10pF。还可以使用外部时钟。这种情况下,外部时钟脉冲接XTAL

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功