§3行列式按行(列)展开一.余子式和代数余子式在n阶行列式中,把元素所在第i行和第j列划去后,留下来的n-1阶行列式叫做元素的余子式.记作.即的余子式记作.的代数余子式ijMijMijjiijMA1第三讲....ijaija中元素的余子式和代数余子式分别为44434241343332312423222114131211aaaaaaaaaaaaaaaaD44434124232114131132aaaaaaaaaM32M32a例如四阶行列式3232321AM二.行列式按行(列)展开定理引理设D为n阶行列式,如果D的第i行所有元素除外,其余元素均为零,那么行列式D等于与其代数余子式的乘积,即ijaijaijijAaD证:设nnnjnijnjaaaaaaaD1111100nnnjnnijiinijiinjijiaaaaaaaaaaaaa11111111111111001ijijijijjinnnjnjnnjnijijiijinijijiijinjjjijjiAaMaaaaaaaaaaaaaaaaaaaaaa1000011111111111111111111111111111111122iiiiininDaAaAaA1,2,,.in11221,2,,.jjjjnjnjDaAaAaAjn定理1行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即证:nnnniniinaaaaaaaaaD212111211nnnniniinaaaaaaaaa2121112110000000nnnninaaaaaaa2111121100nnnninaaaaaaa2121121100nnnninnaaaaaaa211121100类似地.若按列证明,可得11221,2,,.iiiiininaAaAaAin11221,2,,.jjjjnjnjDaAaAaAjn例1.计算3351110243152113D03550100131111115D:解05511111151330550261155028552613140例2计算dcdcdcbababaDn00002解:按第一行展开00100122cdcdcbababddcdcbabaaDnn以此作递推公式,即可得122nnDbcadD21Dbcadndcbabcadn1nbcad222nDbcad12112121nnnDbcadD1212nnbcDadD12)(nDbcad