Algebraic differential equations and rational cont

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ALGEBRAICDIFFERENTIALEQUATIONSANDRATIONALCONTROLSYSTEMS1YuanWangMathematicsDepartment,FloridaAtlanticUniversity,BocaRaton,Fl33431(407)367-3317,E-mail:ywang@fauvax.bitnetEduardoD.SontagDepartmentofMathematics,RutgersUniversity,NewBrunswick,NJ08903(908)932-3072,E-mail:sontag@hilbert.rutgers.eduABSTRACTAnequivalenceisshownbetweenrealizabilityofinput/outputoperatorsbyrationalcontrolsystemsandhighorderalgebraicdi erentialequationsforinput/outputpairs.Thisgeneralizes,tononlinearsys-tems,theequivalencebetweenautoregressiverepresentationsand nitedimensionallinearrealizability.1.Introduction.Inthispaperweproveanequivalencebetweenrealizabilityofinput/outputoperatorsbyrationalcontrolsystemsandtheexistenceofhighorderalgebraicdi erentialequationsrelatingderivativesofinputsandoutputs.Inmanyexperimentalsituationsinvolvingsystems,itisoftenthecasethatonecanmodelsystembehaviorthroughdi erentialequations,whicharereferredtoasinput/output(\i/o)equationsinthiswork,ofthetypeEu(t);u0(t);u00(t);:::;u(r)(t);y(t);y0(t);y00(t);:::;y(r)(t)=0(1)whereu()andy()aretheinputandoutputsignalsrespectively,andEisapolynomial.Ani/ooperatorF:u()7!y()issaidtosatisfytheequation(1)iftheequationholdsforeachsucientlydi erentiableinputuandthecorrespondingoutputy=F[u]ofF.(Precisede nitionswillbegivenlater.)ThefunctionalrelationEisusuallyestimated,forinstancethroughleastsquarestechniques,ifaparametricgeneralform(e.g.polynomialsof xeddegree)ischosen.Forexample,inlinearsystemstheoryoneoftendealswithdegree-onepolynomialsE:y(k)(t)=a1y(t)+:::+aky(k−1)(t)+b1u(t)+:::+bku(k−1)(t)(2)(ortheirfrequency-domainequivalent,transferfunctions;thedi erenceequationanalogueissometimescalledan\autoregressivemovingaveragerepresentation).Inthelinearcase,suchrepresentationsformthebasisofmuchofmodernsystemsanalysisandidenti cationtheory.State-spaceformalismsaremorepopularthani/oequationsinnonlinearcontrol,however.There,oneassumesthatinputsandoutputsarerelatedbyasystemof rstorderdi erentialequationsx0(t)=f(x(t))+G(x(t))u(t);y(t)=h(x(t))(3)wherethestatex(t)isnowavector,andnoderivativesofcontrolsareallowed.Thesedescriptionsarecentraltothemodernnonlinearcontroltheory,astheypermittheapplicationoftechniquesfromdi erentialequations,dynamicalsystems,andoptimizationtheory.Thusabasicquestionisthatofdecidingwhenagiveni/ooperatoradmitsarepresentationofthisform.Thisistheareaofrealizationtheory,whichiscloselyrelated,especiallywhenstochastice ectsareincluded,tosystemsidenti cation.Roughlyspeaking,ifsuchastatespacedescriptiondoesexistforagiveni/ooperator,thenwesaythatthei/ooperatorisrealizable.Moreprecisely,weshallbeinterestedinrealizationsinwhichtheentriesoffandG,aswellasthefunctionh,canbeexpressedintermsofrationalfunctionsofthestate,butduetothetechnicalproblemsthatariseinthede nitionbecauseofpossiblepolesoftheserationalfunctions,wewillgivetheprecisede nitionintermsof\singularpolynomialsystemsandwewillalsostudyrealizabilityby(nonsingular)polynomialsystems.Oneknowsthatanequationsuchas(2)canbereduced,byaddingstatevariablesforenoughderivativesoftheoutputy,toasystem(3)of rstorderequations,withf(x)linearandG(x)constant,1ThisresearchwassupportedinpartbyUSAirForceGrantAFOSR-88-0235.Keywords:Rationalsystems,input/outputequations,identi cation.AMS(MOS)subjectclassi cation:Primary:93B15,Secondary:93A25,93B25,93B27,93B29Runninghead:Algebraicequationsandrationalsystems1i.e.,alinear nite-dimensionalsystem.Infrequency-domainterms,rationalityofthetransferfunctionisequivalenttorealizability.(Forreferencesonthelineartheory,seeeg[14],[23]and[32].)Oneofthemethodsforobtainingalinearrealizationfromagivenlineari/oequationreliesonLordKelvin'sprincipleforsolvingdi erentialequationsbymeansofmechanicalanalogcomputers(cf.[14]).Theprinciple,whichwassuggestedahundredyearsago,providedawayforsimulatingasystemwithoutusingdi erentiators.Fornonlinearsystemsthisreductionpresentsafarharderproblem,onethatistoagreatextentunsolved.Theproblemisbasicallythatofinsomesensereplacinganontrivialequation(1)byasystemof rst-orderequations(3)whichdoesnotinvolvederivativesoftheinputs.Anumberofresultswerealreadyavailableabouttherelationbetween(1)and(3);seeforinstance[4],[12],or[26].Itiseasytoshow,byelementaryargumentsinvolving nitetranscendencedegree,thatanyi/ooperatorrealizablebyarationalstatespacesystemsatis essomei/oequationoftype(1),withEapolynomial.In[6]itwasremarked|asaconsequenceoftheoremsfromdi erentialalgebra,|thatinordertocharacterizethei/obehaviorofastatespacesystemuniquely,oneneedstoaddinequalityconstraintsto(1).In[18]and[27]itwasshownthat,undersomeconstantrankconditions,theoutputsofanobservablesmoothstatespacesystemcanbedescribedbyanequationoftype(1)forwhichEisasmoothfunction,andlocali/oequationswereshowntoexist,forgenericinitialstatesof(3),in[3].1.1.OurApproach.Thediscrete-timeworkreportedin[20]and[21]providedoneapproachtorelatingthesetwotypesofrepresentations|withdi erenceequationsappearinginstead,|basedontheideaofdealingwithexistenceofrealizationsseparatelyfromthequestionof\well-posednessoftheequation(inthesensetobedescribe

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功