关于声音定义

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

振动的物体能使邻近的空气分子振动,这些分子又引起它们邻近的空气分子振动,从而产生声音(Sound),声音以声波的形式传递,这种传递过程叫声辐射(SoundRadiation)。由于分子振动产生的声波的方向与波传递的方向相同,所以是一种纵波(Iongitudinalwave)。声波仅存在于声源周围的媒质中,没有空气的空间里不可能有声波。声音不仅可在空气内传递,也可在水、土、金属等物体内传递。声音在空气中的传播速度为340m/s(15℃时)。声波在单位时间内的振动次数称为频率(frequency),单位赫(Hz)。人耳能够听到的声音的整个范围是20~20000Hz,一般把声音频率分为高频、中频和低频三个频带。听觉好的成年人能听到的声音频率常在30~16000Hz之间,老年人则常在50~10000Hz之间。声波在传播过程中,空气层的密部和疏部向前移动,如图1–1。由于空气的固有弹性,上述那种疏密的压力变化将依次向四外传播,辐射出一系列有规则的波。声波的波长(wavelength)就是这一段路程的长,恰好排列波的一个密部和一个疏部。波长与声源的振动频率和声音传播的速度有关。知道了声波的传播速度和频率,就可以算出波长:C=l·f(式中,C为声波的传播速度m/s;l为声波的波长m;f为声波的频率Hz,)振动物体产生的声波,也就是空气里的压缩波,传到我们耳朵里就变成各种乐音、谐音或噪声。在声音世界里除基音外,大量存在的是复合音,而频率与基音频率成整数倍的所有分音称为谐音(harmonictone),频率比基音高的所有分音统称泛音(overtone),泛音的频率不必与基音成整数倍关系。乐音内的各个音在频率上都有一定比例,例如,高8度的音的振动频率是基音的频率的2倍。如果同时发出两个或两个以上的音,人耳可以听到悦耳的谐音(和声),也可能听到刺耳的噪声。当两个音的振动频率之比为较小的整数比时,如1:2、4:4,会得到悦耳的谐音,当频率比为较大的整数比时,如8:9、8:15,听到的将是令人生厌的噪声。乐器在发出基音的同时,总会伴随着一系列泛音的出现,由于不同乐器的泛音并不相同,所以它们发出的同一个音也不相同,就是这些泛音决定了一个乐器所发声音的音色。频率相同的正弦波之间在时间上的相对位移,称为相位(phase),用度表示。声波与其它波一样,它整个一周为360°的相位变化,同相声波互相加强,异相声波互相减弱,或倾向互相抵消。声源的振幅越大,声音越响,声波的幅度能量按高于或低于正常大气压的压力变化量度,这个变化部分的压强就称声压(soundpressure),以帕斯卡(Pa)计量。人耳听觉的声压范围很大,约2´10~2´10Pa。为了方便计算,在实用上通常都以对数方式的声压级(soundpressurelevel)表示。0dB是基准,它以人耳刚能听到的声压2´10Pa的1000Hz频率的声音为标准。声压级变化3dB,声压增加倍,大多数人要在声压级增加6~10dB时,响度才有加倍感觉。人耳能分辨的最小响度变化是1dB。离声源距离每增大1倍,声压级降低6dB,两个声源并存,声压级增加3dB。声波在传播过程中,遇到障碍物时,只要障碍物的尺寸大于或接近声波的波长,就会产生反射(reflection)而改变其传播方向。部分声波则能绕过障碍物的边缘传播,而声波在通过窄孔时,则将趋向均匀扩散(diffusion),这就是声绕射(衍射,diffraction)。对频率越高的声音,声绕射越不易产生,其传播辐射的指向性越强。频率越低的声音,由于声绕射作用,障碍物的遮蔽作用越弱。如果有两个不同声源发出同样的声音,在同一时间以同样强度到达时,声音呈现的方向大致在两个声源之间;如两个同样的声源中的一个延时5~35ms,则感觉声音似乎都来自未延时的声源;如延迟时间在35~50ms时,延时的声源可被识别出来,但其方向仍在未经延时的声源方向;只有延迟时间超过50ms时,第二声源才能象清晰的回声般听到。这种现象就是哈斯效应(Hasseffect)。人类对声源方向的判别,不仅取决于声波传播的物理过程,还与人的听觉生理和心理因素有关。用单只耳朵虽能决定声音的响度、音调和音色等属性,但不能具体确定声源的方向和准确位置,当用两只耳朵听声音时,对声音方向的定位能力就能提高,这就是双耳效应(binauraleffect)。双耳效应的依据是声源发出的声音,在到达两只耳朵时,由于距离不等,就存在时间差(InterauralTimeDifference)和强度差(InterauralIntensityDifference)。鉴于人的头部双耳间的距离约为16~18cm,是800~1000Hz声音的半波长,所以对频率在800~1000Hz以上的声音,由于头部的遮蔽作用,两耳听到的声音就有强度差异,主要是这种强度差决定了声音在水平面内的定位。频率在800~1000Hz以下的声音,由于声音的绕射作用,双耳的定位能力随着频率的降低而减弱。双耳效应只能解释前方水平方向上的声音定位,三维空间定位主要依赖于耳廓效应。人类听觉系统的频率响应为声源空间方位角的函数,也就是耳廓对来自各个不同方向的声波频谱进行不同的修正后,才由耳道传到鼓膜,大脑依据声音的频谱特性,就能辨别三维空间中的声源方向。声音从不同角度进入人耳时,由于耳廓的结构会影响声源的定位,所以人类的耳廓对确定声音的空间方向起主要作用,这是美国加州大学Irvine实验室自80年代起所作人类对声源定位的生理和心理研究的结果。耳廓效应主要对4kHz以上高频段声波产生梳状滤波作用,而且耳廓效应的数学模型HRTF还与人体头部、肩部及躯干对声波的反射、散射及传导等因素有关。双耳效应和耳廓效应赋于人耳全方位辨别声音方向的能力。1、响度(Loudness)响度是人耳对声音强弱程度的感觉,响度变化大致同声强变化的对数成比例。声音的响度虽主要取决于其强度,但也与其频率和波形有关,人耳对中频的音量变化比之低频和高频更为敏感,所以听觉是非线性的。对声音各频率与1000Hz声音在响度上相等的曲线,称为等响曲线响度的计量单位是方(Phon),人耳在1000~3000Hz频率范围内听觉最灵敏,声压越低,听觉的频率范围越窄,声压越高,频率范围越宽,当响度级达到80Phon以上时,听觉的频率响应趋于平坦。人耳能听到声音的最微弱强度,称为听觉阈,产生疼痛感的最高声音强度,称为痛觉阈。声音的有用音量范围,即最大值与最小值之比,称为动态范围,如图1–3。在一般家庭中重播音乐的声压级的平均值约需75~85db,音量太低,不能正确鉴定声音质量的好坏。2、音调(tome)音调是声音调子的高低,是人耳对声音频率的感受。音调高低与频率高低有密切关系,但声音强度及声音长短都会影响人耳对音调的感觉。声音频率每增加一倍,音调升高八度,也就是一个倍频程(oct)。一个声音的听觉阈会因另一个掩蔽声音的存在而上升的现象,称为掩蔽(masking),通常是低频率的声音容易掩蔽较高频率的声音。3、音色(timber)音色是人耳对某种声音独特性质的综合感受。音色与多种因素有关,但主要取决于声音的波形,而声音的波形则决定于存在的泛音多少及各自的强度,也即主要取决于各种谐波的相对强度和最突出的谐波的频率,如图1–4。语言和音乐都是由许多频率的声音所组合而成,都具有脉冲性质,是一系列连续的宽度和强度不等,而且频率差异的声脉冲的组合。所以声音具有瞬变特性,它的频谱是声波能量按频率的分布。附表1可闻声音频率范围:下限~上限(Hz)名称举例20~4040~8080~160极低频(DeepBass)或最低八度音(Bottomoctave)低频中段(MidBass)低频上段(UpperBass)低频段内的一个基准点是41.2Hz,即低音提琴或电倍斯吉他的最低音。电倍斯的声音主要在低频中段至上段;管风琴、低音大号、倍低音、大管及某些大鼓的最低音在极低频;定音鼓、低音木箫及低音提琴则发声在低频上段。160~320320~64040~1280中频下段(LowerMidrange)中段[(Middle)Midrange]中频上段(UpperMidrange)中频所占的三个八度音程,几乎涵盖人类的发声频率;管弦乐调音的音准频率定在440Hz,该频段不仅集结大部分管弦乐器的能量,亦为人声的精华区;男低音、中提琴、萨克管及多数铜管乐器的发声频率为中频下段;女高音、大部分木管乐器、长笛及小提琴的主要能量则分布在中频上段。1280~2560560~51205120~1024010240~20480高频下段(LowerTreble)高频中段(MidTreble)高频上段(UpperTreble)极高频(UppermostTreble)或最高八度音(TopOctove)整个高频区大部分为乐器的泛音(overtones)或谐波(harmorics)所据。高频下段主要为小提琴与短笛的发声区;高频中段(常被误认为是极高频)则为三角铁及铙钹的发声区。由于人耳听觉系统非常复杂,迄今为止人类对它的生理结构和听觉特性还不能从生理解剖角度完全解释清楚。所以,对人耳听觉特性的研究目前仅限于在心理声学和语言声学。人耳对不同强度、不同频率声音的听觉范围称为声域。在人耳的声域范围内,声音听觉心理的主观感受主要有响度、音高、音色等特征和掩蔽效应、高频定位等特性。其中响度、音高、音色可以在主观上用来描述具有振幅、频率和相位三个物理量的任何复杂的声音,故又称为声音“三要素”;而在多种音源场合,人耳掩蔽效应等特性更重要,它是心理声学的基础。下面简单介绍一下以上问题。一、声音三要素1.响度响度,又称声强或音量,它表示的是声音能量的强弱程度,主要取决于声波振幅的大小。声音的响度一般用声压(达因/平方厘米)或声强(瓦特/平方厘米)来计量,声压的单位为帕(Pa),它与基准声压比值的对数值称为声压级,单位是分贝(dB)。对于响度的心理感受,一般用单位宋(Sone)来度量,并定义lkHz、40dB的纯音的响度为1宋。响度的相对量称为响度级,它表示的是某响度与基准响度比值的对数值,单位为口方(phon),即当人耳感到某声音与1kHz单一频率的纯音同样响时,该声音声压级的分贝数即为其响度级。可见,无论在客观和主观上,这两个单位的概念是完全不同的,除1kHz纯音外,声压级的值一般不等于响度级的值,使用中要注意。响度是听觉的基础。正常人听觉的强度范围为0dB—140dB(也有人认为是-5dB—130dB)。固然,超出人耳的可听频率范围(即频域)的声音,即使响度再大,人耳也听不出来(即响度为零)。但在人耳的可听频域内,若声音弱到或强到一定程度,人耳同样是听不到的。当声音减弱到人耳刚刚可以听见时,此时的声音强度称为“听阈”。一般以1kHz纯音为准进行测量,人耳刚能听到的声压为0dB(通常大于0.3dB即有感受)、声强为10-16W/cm2时的响度级定为0口方。而当声音增强到使人耳感到疼痛时,这个阈值称为“痛阈”。仍以1kHz纯音为准来进行测量,使人耳感到疼痛时的声压级约达到140dB左右。实验表明,闻阈和痛阈是随声压、频率变化的。闻阈和痛阈随频率变化的等响度曲线(弗莱彻—芒森曲线)之间的区域就是人耳的听觉范围。通常认为,对于1kHz纯音,0dB—20dB为宁静声,30dB--40dB为微弱声,50dB—70dB为正常声,80dB—100dB为响音声,110dB—130dB为极响声。而对于1kHz以外的可听声,在同一级等响度曲线上有无数个等效的声压—频率值,例如,200Hz的30dB的声音和1kHz的10dB的声音在人耳听起来具有相同的响度,这就是所谓的“等响”。小于0dB闻阈和大于140dB痛阈时为不可听声,即使是人耳最敏感频率范围的声音,人耳也觉察不到。人耳对不同频率的声音闻阈和痛阈不一样,灵敏度也不一样。人耳的痛阈受频率的影响不大,而闻阈随频率变化相当剧烈。人耳对3kHz—5kHz声音最敏感,幅度很小的声音信号都能被人耳听到,而在低频区(如小于800Hz)和高频

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功