四年级奥数基础讲练教程第一讲加减法的巧算速算奥数知识:在巧算方法里,蕴含着一种重要的解决问题的策略。转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。【例题1】计算9+99+999+9999【思路】这四个加数分别接近10、100、1000、10000。在计算这类题目时,常使用减整法,例如将99转化为100-1。这是小学数学计算中常用的一种技巧。9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=11106【例题2】计算489+487+483+485+484+486+488【思路】认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。489+487+483+485+484+486+488=490×7-1-3-7-5-6-4-2=3430-28=3402想一想:如果选480为基准数,可以怎样计算?.【例题3】计算下面各题。(1)632-156-232(2)128+186+72-86【思路】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。(2)128+186+72-86=128+72+186-86=(128+72)+(186-86)=200+100=300(1)632-156-232=632-232-156=400-156=244【例题4】计算:1.248+(152-127)2.324-(124-97)【思路】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变;如果括号前面是“-”号,去括号时,括号内的加号就要变成减号,减号就要变成加号。我们可以把上面的计算方法概括为:括号前面是加号,去掉括号不变号;括号前面是减号,去掉括号要变号。1.248+(152-127)2.324-(124-97)=248+152-127=324-124+97=400-127=200+97=273=297【例题5】计算下面各题。(1)286+879-679(2)812-593+193【思路】在计算没有括号的加减法混合运算式题时,有时可以根据题目的特点,采用添括号的方法使计算简便,与前面去括号的方法类似,我们可以把这种方法概括为:括号前面是加号,添上括号不变号;括号前面是减号,添上括号要变号。小结:加减法的巧算速算共5种典型题型一是减整法二是选定基数法三是调换运算顺序法四是去括号法五是添括号法练习:【练习1】1.99999+9999+999+99+92.9+98+996+99973.1999+2998+396+4974.198+297+396+4955.1998+2997+4995+59946.19998+39996+49995+69996.【练习2】1.50+52+53+54+512.262+266+270+268+2643.89+94+92+95+93+94+88+96+874.381+378+382+383+3795.1032+1028+1033+1029+1031+10306.2451+2452+2446+2453.【练习3】1.1208-569-2082.283+69-1833.132-85+684.2318+625-1318+375【练习4】1.348+(252-166)2.629+(320-1293.462-(262-129)4.662-(315-238)5.5623-(623-289)+452-(352-2116.736+678+2386-(336+278)-186【练习5】1.368+1859-8592.582+393-2933.632-385+2854.2756-2748+1748+2445.612-375+275+(388+2866.756+1478+346-(256+278)-246第二讲乘除法的巧算速算奥数知识:乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。【例1】计算325÷25。【思路】在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。利用这一性质,可以使这道计算题简便。325÷25=(325×4)÷(25×4)=1300÷100=13【例2】计算25×125×4×8【思路】经过仔细观察可以发现:在这道连乘算式中,如果先把25与4相乘,可以得到100;同时把125与8相乘,可以得到1000;再把100与1000相乘就简便了。这就启发我们运用乘法交换律和结合律使计算简便。25×125×4×8=(25×4)×(125×8)=100×1000=100000【例3】计算(1)(360+108)÷36(2)(450-75)÷15【思路】两个数的和(或差)除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(或差)。利用这一性质,可以使这道题计算简便。(1)(360+108)÷36(2)(450-75)÷15=360÷36+108÷36=450÷15-75÷15=10+3=30-5=13=25【例4】计算158×61÷79×3。【思路】在乘除法混合运算中,如果算式中没有括号,计算时可以根据运算定律和性质调换因数或除数的位置。158×61÷79×3=158÷79×61×3=2×61×3=366【例5】计算下面各题。(1)123×96÷16(2)200÷(25÷4)【思路】这两道题都是乘除混合运算式题,我们可以根据这两道题的特点,采用加括号或去括号的方法,使计算简便。其方法与加减混合运算添、去括号的方法类似,可以概括为:括号前是乘号,添、去括号不变号;括号前是除号,添、去括号要变号。(1)123×96÷16(2)200÷(25÷4)=123×(96÷16)=200÷25×4=123×6=8×4=738=32小结:乘除法的巧算速算常用3种方法:一是同时扩大(缩小)除数与被除数倍数凑整二是调换运算顺序凑整三是去括号(添括号)【练习1】1.450÷252.525÷253.3500÷1254.10000÷6255.9000÷225【练习2】1.125×15×8×42.25×3.25×5×64×1254.125×25×325.75×166.125×16【练习3】计算下面各题。1.(720+96)÷242.(4500-90)÷453.8811÷894.73÷36+105÷36+146÷365.(10000-1000-100-10)÷10【练习4】1.238×36÷119×52.624×48÷312÷83.138×27÷69×504.406×312÷104÷203【练习5】计算下面各题。1.612×366÷1832.1000÷(125÷4)3.(13×8×5×6)÷(4×5×6)4.241×345÷678÷345×(678÷241)第三讲小数巧算知识点拨一、基本运算律及公式一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)例题精讲模块一:分组凑整思想【例1】91.8186.789.6270.490.288.891.5【巩固】2006+200.6+20.06+2.006+994+99.4+9.94+0.994=【例3】计算56.43+12.96+13.57-4.33-8.96-5.67模块二、加补凑整思想【例5】(1)0.999990.99990.9990.990.9(2)199.819.971.996(3)999999999.799.79.70.7【巩固】(1)9.996+29.98+169.9+3999.5(2)89+899+8999+89999+899999模块三、位值原理【例7】924.68724.68524.68324.68124.68模块四、基准数思想【例8】计算0.999990.99990.9990.990.9【巩固】199.819.971.996第四讲体育比赛中的数学问题一、知识点总结1.单循环赛:每两个队之间都要比赛一场,无主客场之分。(通俗的说就是除了不和自己比赛,其他人都要比)2.双循环赛:每两个队都要比赛一场,有主客场之分。(每个队和同一个对手交换场地赛两次)一共比赛场数=(人数-1)×人数3.淘汰赛:每两个队用一场比赛定胜负,经过若干轮之后,最后决出冠军。(每场比赛输者打包回家)二、做题方法1.点线图2.列表法3.极端性分析------根据个人比赛场数,猜个人最高分根据得分,猜“战况”例题分析例题1:三年级四个班进行足球比赛,每两个班之间都要赛一场,每个班赛几场?一共要进行多少场比赛?解析:除了不和自己赛,和其他班都要赛,所以每个班赛4-1=3场。一共进行的场数:3×4÷2=6场练习1:每个学校都要赛一场,共赛了28场,那么有几个学校参加比赛?解析:方法一:“老土方法”:1+2+3+4+……7=287+1=8个方法二:(人数-1)×人数=28×2=567×8=56,所以为8人例题2:20名羽毛球运动员参加单打比赛,淘汰赛,那么冠军一共要比赛多少场?解析:第一轮:20÷2=10(场),10名胜利者进入下一轮第二轮:10÷2=5(场),5名胜利者进入下一轮第三轮:5÷2=2(场)....1人,3名胜利者进入下一轮第四轮:2÷2=1(场)胜利者和第三轮中剩下的一人进入下一轮比赛第五轮:2÷2=1(场)冠军一共参加了5场比赛。决出冠军一共要比赛的场数:一场比赛淘汰一人,除了冠军不被淘汰:20-1=19场例题3:A,B,C,D,E,五位同学一起比赛象棋,单循环比赛,A已经赛了4盘,B已经赛了3盘,C赛了2盘,D赛了1盘,此时E赛了几盘?解析:利用点线图例题4:A,B,C,D,E,五位同学一起比赛乒乓球,单循环比赛,胜者得2分,负者不得分,比赛结果如下:(1)A与E并列第一(2)B是第三名(3