2018年山东省普通高校招生(春季)考试数学试题(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

页1第2018年山东省普通高校招生(春季)考试数学试题(解析版)卷一一、选择题(本大题20个小题,每小题3分,共60分。在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合,,则等于()A.B.C.D.【答案】B【解析】分析:根据交集的定义求解.详解:因为,,所以选B.点睛:集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.2.函数的定义域是()A.B.C.D.【答案】D【解析】分析:根据偶次根式下被开方数非负以及分母不为零列方程组,解方程组得定义域.详解:因为,所以所以定义域为,选D.点睛:求具体函数定义域,主要从以下方面列条件:偶次根式下被开方数非负,分母不为零,对数真数大于零,实际意义等.3.奇函数的局部图像如图所示,则()A.B.页2第C.D.【答案】A【解析】分析:根据奇函数性质将,转化到,,再根据图像比较大小得结果.详解:因为奇函数,所以,因为0,所以,即,选A.点睛:奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.4.不等式的解集是()A.B.C.D.【答案】A【解析】分析:根据对数函数单调性化简不等式,再根据绝对值定义解不等式.详解:因为,所以所以因此,选A.点睛:解对数不等式,不仅要注意单调性,而且要注意真数大于零的限制条件.5.在数列中,,,则等于()A.B.C.D.【答案】C【解析】分析:由递推关系依次得.详解:因为,所以,选C.点睛:数列递推关系式也是数列一种表示方法,可以按顺序求出所求的项.6.在如图所示的平面直角坐标系中,向量的坐标是()A.B.C.D.页3第【答案】D【解析】分析:先根据图形得A,B坐标,再写出向量AB.详解:因为A(2,2),B(1,1),所以选D.点睛:向量坐标表示:向量平行:,向量垂直:,向量加减:7.的圆心在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】分析:先根据圆方程得圆心坐标,再根据坐标确定象限.详解:因为的圆心为(-1,1),所以圆心在第二象限,选B.点睛:圆的标准方程中圆心和半径;圆的一般方程中圆心和半径.8.已知,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】分析:根据指数函数单调性可得两者关系.详解:因为为单调递增函数,所以因此“”是“”的充要条件,选C.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.9.关于直线,下列说法正确的是()A.直线的倾斜角为B.向量是直线的一个方向向量页4第C.直线经过点D.向量是直线的一个法向量【答案】B【解析】分析:先根据方程得斜率,再根据斜率得倾斜角以及方法向量.详解:因为直线,所以斜率倾斜角为,一个方向向量为,因此也是直线的一个方向向量,选B.点睛:直线斜率,倾斜角为,一个方向向量为.10.景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同走法的种数是()A.6B.10C.12D.20【答案】C【解析】分析:根据乘法原理得不同走法的种数.详解:先确定从那一面上,有两种选择,再选择上山与下山道路,可得不同走法的种数是因此选C.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.11.在平面直角坐标系中,关于的不等式表示的区域(阴影部分)可能是()A.B.C.D.【答案】B【解析】分析:根据A,B符号讨论不等式表示的区域,再对照选择.详解:当时,所以不等式表示的区域直线上方部分且含坐标原点,即B;当时,所以不等式表示的区域直线方部分且不含坐标原点;当时,所以不等式表示的区域直线上方部分且不含坐标原点;当时,所以不等式表示的区域直线方部分且含坐标原点;选B.点睛:讨论不等式表示的区域,一般对B的正负进行讨论.页5第12.已知两个非零向量与的夹角为锐角,则()A.B.C.D.【答案】A【解析】分析:根据向量数量积可得结果.详解:因为,两个非零向量与的夹角为锐角,所以,选A.点睛:求平面向量数量积有三种方法:一是夹角公式;二是坐标公式;三是利用数量积的几何意义.13.若坐标原点到直线的距离等于,则角的取值集合是()A.B.C.D.【答案】A【解析】分析:先根据点到直线距离公式得角关系式,再解三角方程得结果.详解:因为坐标原点到直线的距离为,所以所以,即,选A.点睛:由求最值,最大值对应自变量满足,最小值对应自变量满足.14.关于的方程,表示的图形不可能是()A.B.C.D.【答案】D【解析】分析:先化方程为标准方程形式,再根据标准方程几何条件确定可能图像.详解:因为,所以所以当时,表示A;当时,表示B;当时,表示C;页6第选D.点睛:对于,有当时,为圆;当时,为椭圆;当时,为双曲线.15.在的展开式中,所有项的系数之和等于()A.32B.-32C.1D.-1【答案】D【解析】分析:令x=y=1,则得所有项的系数之和.详解:令x=y=1,则得所有项的系数之和为,选D.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.16.设命题,命题,则下列命题中为真命题的是()A.B.C.D.【答案】A【解析】分析:先确定p,q真假,再根据或且非判断复合命题真假.详解:因为命题为真,命题为真,所以为真,、为假,选A.点睛:若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”:一真即真,“且”:一假即假,“非”:真假相反,做出判断即可.17.已知抛物线的焦点为,准线为,该抛物线上的点到轴的距离为5,且,则焦点到准线的距离是()A.2B.3C.4D.5【答案】C【解析】分析:根据条件以及抛物线定义得|a|,即可得焦点到准线的距离.详解:因为,点到轴的距离为5,所以,因此焦点到准线的距离是,选C.点睛:1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.2.若为抛物线上一点,由定义易得;若过焦点的弦AB的端点坐标为,则弦长为可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公页7第式可由数形结合的方法类似地得到.18.某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是()A.B.C.D.【答案】C【解析】分析:先求三辆车皆不相邻的概率,再根据对立事件概率关系求结果.详解:因为三辆车皆不相邻的情况有,所以三辆车皆不相邻的概率为,因此至少有2辆汽车停放在相邻车位的概率是选C.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.19.己知矩形,,把这个矩形分别以所在直线为轴旋转一周,所成几何体的侧面积分别记为,则与的比值等于()A.B.C.D.【答案】B【解析】分析:根据圆柱侧面积公式分别求,再求比值得结果.详解:设,所以,选B.点睛:旋转体的表面积问题注意其侧面展开图的应用,多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.20.若由函数的图像变换得到的图像,则可以通过以下两个步骤完成:第一步,把图像上所有点的横坐标变为原来的4倍,纵坐标不变:第二步,可以把所得图像沿轴()A.向右移个单位B.向右平移个单位页8第C.向左平移个单位D.同左平移个单位【答案】A【解析】分析:根据图像平移“左正右负”以及平移量为确定结果.详解:因为,所以所得图像沿轴向右平移个单位,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.卷二二、填空题(本大题5个小题,每小题4分,共20分。请将答案填在答题卡相应题号的横线上)21.已知函数,则的值等于__________.【答案】【解析】分析:根据自变量对应解析式代入求值,再根据求得函数值对应解析式代入求结果.详解:因为,所以.点睛:求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.22.已知,若,则等于__________.【答案】【解析】分析:根据平方关系得,再根据范围取负值.详解:因为,所以因为,所以点睛:三角函数求值的三种类型(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.页9第(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.23.如图所示,已知正方体,分别是上不重合的两个动点,给山下列四个结论:①;②平面平面;③;④平面平面.其中,正确结论的序号是__________.【答案】③④【解析】分析:取E,F特殊位置可否定①②,根据线面垂直关系可得③④正确.详解:当E=D1,F=A1时平面平面,所以①②错;因为,在内,所以;因为平面,所以平面平面.因此③④正确.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.24.已知椭圆的中心在坐标原点,一个焦点的坐标是,若点在椭圆上,则椭圆的离心率等于__________.【答案】【解析】分析:根据椭圆几何条件得b=4,c=3,解得a,以及离心率.详解:因为b=4,c=3,所以a=5,e=.25.在一批棉花中随机抽测了500根棉花纤维的长度(精确到)作为样本,并绘制了如图所示的频率分布直方图,由图可知,样本中棉花红维的长度大于的频数是__________.页10第【答案】【解析】分析:根据频率分布直方图得长度大于的频率,再根据频数等于总数与频率的乘积得结果.详解:因为长度大于的频率为,所以长度大于的频数是.点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1;频率分布直方图中组中值与对应区间概率乘积的和为平均数;频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.三、解答题(本大题5个小题,共40分)26.已知函数,其中为常数.(1)若函数在区间上单调递减,求实数的取值范围:(2)若,都有,求实数的取值范围.【答案】(1)(2)【解析】分析:(1)根据二次函数性质得对称轴不在区间内,解不等式可得实数的取值范围,(2)根据二次函数图像得得在x轴上方,即,解得实数的取值范围.详解:(1)因为开口向上,所以该函数的对称轴是因此解得所以的取值范围是.(2)因为恒成立,所以整理得解得因此,的取值范围是.点睛:研究二次函数单调性的思路(1)二次函数的单调性在其图象对称轴的两侧不同,因

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功