求通项公式和数列求和的常用方法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-1-求递推数列通项公式的常用方法一公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有1nnnaSS(2)n,等差数列或等比数列的通项公式。例一已知无穷数列na的前n项和为nS,并且*1()nnaSnN,求na的通项公式?【解析】:1nnSa,111nnnnnaSSaa,112nnaa,又112a,12nna.反思:利用相关数列na与nS的关系:11aS,1nnnaSS(2)n与提设条件,建立递推关系,是本题求解的关键.跟踪训练1.已知数列na的前n项和nS,满足关系1lgnSn(1,2)n.试证数列na是等比数列.二归纳法:由数列前几项用不完全归纳猜测出数列的通项公式,再利用数学归纳法证明其正确性,这种方法叫归纳法.例二已知数列na中,11a,121(2)nnaan,求数列na的通项公式.【解析】:11a,121(2)nnaan,2121aa3,3221aa7猜测21nna*()nN,再用数学归纳法证明.(略)反思:用归纳法求递推数列,首先要熟悉一般数列的通项公式,再就是一定要用数学归纳法证明其正确性.跟踪训练2.设na是正数组成的数列,其前n项和为nS,并且对于所有自然数n,na与1的等差中项等于nS与1的等比中项,求数列na的通项公式.三累加法:利用1211()()nnnaaaaaa求通项公式的方法称为累加法。累加法是求型如1()nnaafn的递推数列通项公式的基本方法(()fn可求前n项和).例三已知无穷数列na的的通项公式是12nna,若数列nb满足11b,(1)n,求数列nb的通项公式.【解析】:11b,112nnnbb(1)n,1211()()nnnbbbbbb=1+12++112n=1122n.反思:用累加法求通项公式的关键是将递推公式变形为1()nnaafn.-2-跟踪训练3.已知112a,112nnnaa*()nN,求数列na通项公式.四累乘法:利用恒等式321121(0,2)nnnnaaaaaanaaa求通项公式的方法称为累乘法,累乘法是求型如:1()nnagna的递推数列通项公式的基本方法(数列()gn可求前n项积).例四已知11a,1()nnnanaa*()nN,求数列na通项公式.【解析】:1()nnnanaa,11nnanan,又有321121(0,2)nnnnaaaaaanaaa=1×23n×××12n-1=n,当1n时11a,满足nan,nan.反思:用累乘法求通项公式的关键是将递推公式变形为1()nnagna.跟踪训练4.已知数列na满足11a,123123(1)(2)nnaaaanan.则na的通项公式是.五构造新数列:类型1)(1nfaann解法:把原递推公式转化为)(1nfaann,利用累加法(逐差相加法)求解。例1:已知数列na满足211a,nnaann211,求na。解:由条件知:111)1(1121nnnnnnaann分别令)1(,,3,2,1nn,代入上式得)1(n个等式累加之,即)()()()(1342312nnaaaaaaaa)111()4131()3121()211(nn所以naan111211a,nnan1231121类型2nnanfa)(1解法:把原递推公式转化为)(1nfaann,利用累乘法(逐商相乘法)求解。例2:已知数列na满足321a,nnanna11,求na。解:由条件知11nnaann,分别令)1(,,3,2,1nn,代入上式得)1(n个等式累乘之,即1342312nnaaaaaaaann1433221naan11-3-又321a,nan32例3:已知31a,nnanna23131)1(n,求na。解:123132231232)2(31)2(32)1(31)1(3annnnan3437526331348531nnnnn。变式:(2004,全国I,)已知数列{an},满足a1=1,1321)1(32nnanaaaa(n≥2),则{an}的通项1___na12nn解:由已知,得nnnnaanaaaa13211)1(32,用此式减去已知式,得当2n时,nnnnaaa1,即nnana)1(1,又112aa,naaaaaaaaann13423121,,4,3,1,1,将以上n个式子相乘,得2!nan)2(n类型3qpaann1(其中p,q均为常数,)0)1((ppq)。解法(待定系数法):把原递推公式转化为:)(1taptann,其中pqt1,再利用换元法转化为等比数列求解。例4:已知数列na中,11a,321nnaa,求na.解:设递推公式321nnaa可以转化为)(21tatann即321ttaann.故递推公式为)3(231nnaa,令3nnab,则4311ab,且23311nnnnaabb.所以nb是以41b为首项,2为公比的等比数列,则11224nnnb,所以321nna.变式:(2006,重庆,文,14)在数列na中,若111,23(1)nnaaan,则该数列的通项na_______________(key:321nna)类型4nnnqpaa1(其中p,q均为常数,)0)1)(1((qppq)。(或1nnnaparq,其中p,q,r均为常数)。解法:一般地,要先在原递推公式两边同除以1nq,得:qqaqpqannnn111引入辅助数列nb(其中nnnqab),得:qbqpbnn11再待定系数法解决。-4-例5:已知数列na中,651a,11)21(31nnnaa,求na。解:在11)21(31nnnaa两边乘以12n得:1)2(32211nnnnaa令nnnab2,则1321nnbb,解之得:nnb)32(23所以nnnnnba)31(2)21(32类型5递推公式为nnnqapaa12(其中p,q均为常数)。解(特征根法):对于由递推公式nnnqapaa12,21,aa给出的数列na,方程02qpxx,叫做数列na的特征方程。若21,xx是特征方程的两个根,当21xx时,数列na的通项为1211nnnBxAxa,其中A,B由21,aa决定(即把2121,,,xxaa和2,1n,代入1211nnnBxAxa,得到关于A、B的方程组);当21xx时,数列na的通项为11)(nnxBnAa,其中A,B由21,aa决定(即把2121,,,xxaa和2,1n,代入11)(nnxBnAa,得到关于A、B的方程组)。例6:数列na:),0(025312Nnnaaannn,baaa21,,求na解(特征根法):的特征方程是:02532xx。32,121xx,1211nnnBxAxa1)32(nBA。又由baaa21,,于是)(32332baBabABAbBAa故1)32)((323nnbaaba练习:已知数列na中,11a,22a,nnnaaa313212,求na。1731:()443nnkeya。变式:(2006,福建,文,22)已知数列na满足*12211,3,32().nnnaaaaanN求数列na的通项公式;(I)解:112211()()...()nnnnnaaaaaaaa12*22...2121().nnnnN类型6递推公式为nS与na的关系式。(或()nnSfa)-5-解法:利用)2()1(11nSSnSannn与)()(11nnnnnafafSSa消去nS)2(n或与)(1nnnSSfS)2(n消去na进行求解。例7:数列na前n项和2214nnnaS.(1)求1na与na的关系;(2)求通项公式na.解:(1)由2214nnnaS得:111214nnnaS于是)2121()(1211nnnnnnaaSS所以11121nnnnaaannnaa21211.(2)应用类型4(nnnqpaa1(其中p,q均为常数,)0)1)(1((qppq))的方法,上式两边同乘以12n得:22211nnnnaa由1214121111aaSa.于是数列nna2是以2为首项,2为公差的等差数列,所以nnann2)1(22212nnna数列求和的常用方法数列求和是数列的重要内容之一,也是高考数学的重点考查对象。数列求和的基本思路是,抓通项,找规律,套方法。下面介绍数列求和的几种常用方法:一、直接(或转化)由等差、等比数列的求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、等差数列求和公式:dnnnaaanSnn2)1(2)(112、等比数列求和公式:)1(11)1()1(111qqqaaqqaqnaSnnn3、)1(211nnkSnkn4、)12)(1(6112nnnkSnkn5、213)]1(21[nnkSnkn例1(07高考山东文18)设{}na是公比大于1的等比数列,nS为数列{}na的前n项和.已知37S,且123334aaa,,构成等差数列.(1)求数列{}na的等差数列.(2)令31ln12nnban,,,,求数列{}nb的前n项和T.-6-解:(1)由已知得1231327:(3)(4)3.2aaaaaa,解得22a.设数列{}na的公比为q,由22a,可得1322aaqq,.又37S,可知2227qq,即22520qq,解得12122qq,.由题意得12qq,.11a.故数列{}na的通项为12nna.(2)由于31ln12nnban,,,,由(1)得3312nna3ln23ln2nnbn,又13ln2nnnbb{}nb是等差数列.12nnTbbb1()2(3ln23ln2)23(1)ln2.2nnbbnnn故3(1)ln22nnnT.练习:设Sn=1+2+3+…+n,n∈N*,求1)32()(nnSnSnf的最大值.二、错位相减法设数列na的等比数列,数列nb是等差数列,则数列nnba的前n项和nS求解,均可用错位相减法。例2(07高考天津)在数列na中,1112(2)2()nnnnaaanN,,其中0

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功