长春光机所博士考试-误差理论资料合集-教材+试卷2001-2015年

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1中科院长春光机所博士考试资料_误差理论试卷2001-2015一、教材课后习题答案(《误差理论与数据处理》费业泰)第一章绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。误差理论的主要内容:误差定义、误差来源及误差分类等。1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。+多少表明大了多少,-多少表示小了多少。(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差2解:绝对误差等于:相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为50mm,已知其最大绝对误差为1μm,试问该被测件的真实长度为多少?解:绝对误差=测得值-真值,即:△L=L-L0已知:L=50,△L=1μm=0.001mm,测件的真实长度L0=L-△L=50-0.001=49.999(mm)1-7.用二等标准活塞压力计测量某压力得100.2Pa,该压力用更准确的办法测得为100.5Pa,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。故二等标准活塞压力计测量值的误差=测得值-实际值,即:100.2-100.5=-0.3(Pa)1-8在测量某一长度时,读数值为2.31m,其最大绝对误差为20m,试求其最大相对误差。%108.66%1002.311020100%maxmax4-6-测得值绝对误差相对误差1-9、解:由21224()hhgT,得2241.042309.81053m/s2.0480g对21224()hhgT进行全微分,令12hhh,并令g,h,T代替dg,dh,dT得222348hhTgTT21802000180oo%000031.010000030864.00648002066018021802=o3从而2ghTghT的最大相对误差为:maxmaxmax2ghTghT=0.000050.000521.042302.0480=5.3625410%由21224()hhgT,得24hTg,所以243.141591.042202.047909.81053T由maxmaxmax2ghTghT,有maxmaxminminmaxmax{[()],[()]}22hgghTTTABSABShghg1-10检定2.5级(即引用误差为2.5%)的全量程为100V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电压表是否合格?%5.22%100%1002100%测量范围上限某量程最大示值误差最大引用误差该电压表合格1-11为什么在使用微安表等各种表时,总希望指针在全量程的2/3范围内使用?答:当我们进行测量时,测量的最大相对误差:即:所以当真值一定的情况下,所选用的仪表的量程越小,相对误差越小,测量越准确。因此我们选择的量程应靠近真值,所以在测量时应尽量使指针靠近满度范围的三分之二以上.max00xx%msAA△max0x%msA41-12用两种方法分别测量L1=50mm,L2=80mm。测得值各为50.004mm,80.006mm。试评定两种方法测量精度的高低。相对误差L1:50mm0.008%100%5050004.501IL2:80mm0.0075%100%8080006.802I21II所以L2=80mm方法测量精度高。1-13多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。1-14若用两种测量方法测量某零件的长度L1=110mm,其测量误差分别为m11和m9;而用第三种测量方法测量另一零件的长度L2=150mm。其测量误差为m12,试比较三种测量方法精度的高低。相对误差0.01%110111mmmI0.0082%11092mmmI%008.0150123mmmI123III第三种方法的测量精度最高第二章误差的基本性质与处理2-1.试述标准差、平均误差和或然误差的几何意义。%001.000001.0100001.0%002.00002.05001.0501mmmcm5答:从几何学的角度出发,标准差可以理解为一个从N维空间的一个点到一条直线的距离的函数;从几何学的角度出发,平均误差可以理解为N条线段的平均长度;2-2.试述单次测量的标准差和算术平均值的标准差,两者物理意义及实际用途有何不同。2-3试分析求服从正态分布、反正弦分布、均匀分布误差落在中的概率2-4.测量某物体重量共8次,测的数据(单位为g)为236.45,236.37,236.51,236.34,236.39,236.48,236.47,236.40,是求算术平均值以及标准差。0.05(0.03)0.11(0.06)(0.01)0.080.070236.48236.43x210.05991niivn0.0212xn2-5用別捷尔斯法、极差法和最大误差法计算2-4,并比较2-6测量某电路电流共5次,测得数据(单位为mA)为168.41,168.54,168.59,168.40,168.50。试求算术平均值及其标准差、或然误差和平均误差。168.41168.54168.59168.40168.505x168.488()mA)(082.015512mAvii0.0820.037()5xmAn或然误差:0.67450.67450.0370.025()xRmA6平均误差:0.79790.79790.0370.030()xTmA2-7在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm)为20.0015,20.0016,20.0018,20.0015,20.0011。若测量值服从正态分布,试以99%的置信概率确定测量结果。20.001520.001620.001820.001520.00115x20.0015()mm5210.0002551iiv正态分布p=99%时,t2.58limxxt0.000252.5850.0003()mm测量结果:lim(20.00150.0003)xXxmm2—7在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm)为20.0015,20.0016,20.0018,20.0015,20.0011。若测量值服从正态分布,试以99%的置信概率确定测量结果。解:求算术平均值求单次测量的标准差求算术平均值的标准差确定测量的极限误差因n=5较小,算术平均值的极限误差应按t分布处理。mmnlxnii0015.201mmnvnii48121055.2410261mmnx441014.151055.2=7现自由度为:ν=n-1=4;α=1-0.99=0.01,查t分布表有:ta=4.60极限误差为写出最后测量结果2-9用某仪器测量工件尺寸,在排除系统误差的条件下,其标准差mm004.0,若要求测量结果的置信限为mm005.0,当置信概率为99%时,试求必要的测量次数。正态分布p=99%时,t2.58limxtn2.580.0042.0640.0054.265nnn取2-10用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm,若要求测量的允许极限误差为±0.0015mm,而置信概率P为0.95时,应测量多少次?解:根据极限误差的意义,有0015.0nttx根据题目给定得已知条件,有5.1001.00015.0nt查教材附录表3有若n=5,v=4,α=0.05,有t=2.78,24.1236.278.2578.2nt若n=4,v=3,α=0.05,有t=3.18,mmtxx44lim1024.51014.160.4mmxxL4lim1024.50015.20859.1218.3418.3nt即要达题意要求,必须至少测量5次。2-12某时某地由气压表得到的读数(单位为Pa)为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101724.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。)(34.1020288181Papxpxiiiii)(95.86)18(81812Papvpiiixiix2-13测量某角度共两次,测得值为6331241,''24'13242,其标准差分别为8.13,1.321,试求加权算术平均值及其标准差。961:190441:1:222121pp''35'132496119044''4961''1619044''20'1324x''0.39611904419044''1.321iiixxppi2-14甲、乙两测量者用正弦尺对一锥体的锥角各重复测量5次,测得值如下:;5127,0227,5327,037,0227:甲;5427,0527,0227,5227,5227:乙试求其测量结果。9甲:206035201572'72'305x甲52151iiv22222甲(-10)(30)5(-10)(-15)418.4x18.48.2355甲甲乙:252520504572'72'335x乙5211351iiv22222乙(-8)(-8)()(17)(12)413.5x13.56.0455乙乙2222xx1111:::3648:67738.236.04pp乙乙甲甲36483067733372'36486773pxpxxpp甲乙乙甲乙甲72'3278.467733648364832.8乙甲甲甲pppxx''15''32'273xxX2-15.试证明n个相等精度测得值的平均值的权为n乘以任一个测量值的权。证明:解:因为n个测量值属于等精度测量,因此具有相同的标准偏差:n个测量值算术平均值的标准偏差为:已知权与方差成反比,设单次测量的权为P1,算术平均值的权为P

1 / 43
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功