2017-2018学年福建省福州市八县一中高一(上)期末数学试卷(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2017-2018学年福建省福州市八县一中高一(上)期末数学试卷(解析版)一、选择题(本大题共12小题,共60.0分)1.设M={3,a},N={1,2},M∩N={2},M∪N=()A.{1,2}B.{1,3}C.{1,2,3}D.{1,2,3,𝑎}2.经过点P(-2,m)和Q(m,4)两点的直线与直线l:x-2y-1=0平行,则实数m的值是()A.2B.10C.0D.−83.同学们,当你任意摆放手中笔的时候,那么桌面所在的平面一定存在直线与笔所在的直线()A.平行B.相交C.异面D.垂直4.直线l1与直线l2:x-2y+1=0的交点在x轴上,且l1⊥l2,则直线l1在y轴上的截距是()A.2B.−2C.1D.−15.设m,n为两条不同的直线,α为平面,则下列结论正确的是()A.𝑚⊥𝑛,𝑚//𝛼⇒𝑛⊥𝛼B.𝑚⊥𝑛,𝑚⊥𝛼⇒𝑛//𝛼C.𝑚//𝑛,𝑚//𝛼⇒𝑛//𝛼D.𝑚//𝑛,𝑚⊥𝛼⇒𝑛⊥𝛼6.已知直线l:x+y-m=0与圆C:(x-1)2+(y+1)2=4交于A,B两点,若△ABC为直角三角形,则m=()A.2B.±2C.2√2D.±2√27.已知奇函数f(x)在R上是减函数,若𝑎=−𝑓(𝑙𝑜𝑔215),b=f(log26),c=f(20.8),则a,b,c的大小关系为()A.𝑎𝑏𝑐B.𝑏𝑎𝑐C.𝑐𝑏𝑎D.𝑐𝑎𝑏8.已知直线l的方程为:(m+2)x+3y+2m+1=0,圆C:x2+y2=6,则直线l与圆C的位置关系一定是()A.相离B.相切C.相交D.不确定9.如图,格纸上小正方形的边长为2,粗线画出的是某几何体的三视图,则该几何体的体积是()A.6𝜋B.7𝜋C.12𝜋D.14𝜋10.如图,在三棱柱ABC-A1B1C1中,底面ABC是等边三角形,AA1⊥底面ABC,且AB=2,AA1=1,则直线BC1与平面ABB1A1所成角的正弦值为()A.√155B.√105C.2√55D.√5511.已知函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是()A.0𝑎−1𝑏1B.0𝑏𝑎−11C.0𝑏−1𝑎1D.0𝑎−1𝑏−1112.已知圆C:(x-3)2+(y+2)2=9,点A(-2,0),B(0,2),设点P是圆C上一个动点,定义:一个动点到两个定点的距离的平方和叫做“离差平方和”,记作D2,令D2=PA2+PB2,则D2的最小值为()A.6B.8C.12D.16二、填空题(本大题共4小题,共20.0分)13.已知函数f(x)={3𝑥,𝑥≤0𝑙𝑛𝑥,𝑥0,则f[f(1𝑒)的值是______.14.在如图所示的长方体ABCD-A1B1C1D1中,已知B1(1,0,3),D(0,2,0),则点C1的坐标为______.15.长度为4的线段AB的两个端点A和B分别在x轴和y轴上滑动,则线段AB的中点的轨迹方程为______.16.一个半径为2的实心木球加工(进行切割)成一个圆柱,那么加工后的圆柱侧面积的最大值为______.三、解答题(本大题共6小题,共70.0分)17.如图,在三棱柱ABC-A1B1C1中,已知CC1⊥底面ABC,AC⊥BC,四边形BB1C1C为正方形.(1)求异面直线AA1与BC1所成角的大小;(2)求证:BC1⊥平面AB1C.18.如图所示,已知△ABC是以AB为底边的等腰三角形,点A(1,4),B(3,2),点C在直线:x-2y+6=0上.(1)求AB边上的高CE所在直线的方程;(2)设直线与轴交于点D,求△ACD的面积.19.如图所示,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱𝑃𝐴=𝑃𝐷=√2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2BC=2.(1)在线段AD上是否存在点O使得CD∥平面POB?并说明理由.(2)求证:平面PAB⊥平面PCD.20.已知定义在R上的偶函数f(x)满足:当x≥0时,𝑓(𝑥)=2𝑥+𝑎2𝑥,𝑓(1)=52.(1)求实数a的值;(2)用定义法证明f(x)在(0,+∞)上是增函数;(3)求函数f(x)在[-1,2上的值域.21.如图,在四棱锥S-ABCD中,四边形ABCD为矩形,E为SA的中点,SA=SB=2,AB=2√3,BC=3.(Ⅰ)证明:SC∥平面BDE;(Ⅱ)若BC⊥SB,求三棱锥C-BDE的体积.22.已知圆C:x2+y2-4y+1=0,点M(-1,-1).(1)若过点M的直线l与圆交于A,B两点,若𝐴𝐵=2√2,求直线l的方程;(2)从圆C外一点P向该圆引一条切线,记切点为T,若满足PT=PM,求使PT取得最小值时点P的坐标.答案和解析1.【答案】C【解析】解:∵M={3,a},N={1,2},M∩N={2},∴a=2,∴M∪N={1,2,3}.故选:C.由M={3,a},N={1,2},M∩N={2},求出a=2,由此能求出M∪N.本题考查并集的求法,考查并集、交集定义等基础知识,考查运算求解能力,是基础题.2.【答案】A【解析】解:∵经过点P(-2,m)和Q(m,4)两点的直线与直线l:x-2y-1=0平行,∴=,解得m=2.故选:A.利用直线与直线平行的性质直接求解.本题考查实数值的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题.3.【答案】D【解析】解:由题意,笔所在直线若与地面垂直,则在地面总有这样的直线,使得它与笔所在直线垂直若笔所在直线若与地面不垂直,则其必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直综上,当你任意摆放手中笔的时候,那么桌面所在的平面一定存在直线与笔所在的直线垂直.故选:D.由题设条件可知,可以借助投影的概念对及三垂线定理选出正确选项.本题考查空间中直线与平面之间的位置关系,解题的关键是熟练掌握线面垂直与三垂线定理,再结合直线与地面位置关系的判断得出答案.4.【答案】B【解析】解:∵直线l1与直线l2:x-2y+1=0的交点在x轴上,∴直线l1经过点(-1,0),∵l1⊥l2,∴直线l1的斜率=-2,∴直线l1的方程为:y=-2(x+1),即2x+y+2=0,当x=0时,y=-2,∴直线l1在y轴上的截距是-2.故选:B.推导出直线l1经过点(-1,0),斜率=-2,从而求出直线l1的方程为2x+y+2=0,由此能求出直线l1在y轴上的截距.本题考查直线的纵截距的求法,考查直线与直线垂直等基础知识,考查运算求解能力,是基础题.5.【答案】D【解析】解:对于A,若m⊥n,m∥α时,可能n⊂α或斜交,故错;对于B,m⊥n,m⊥α⇒n∥α或m⊂α,故错;对于C,m∥n,m∥α⇒n∥α或m⊂α,故错;对于D,m∥n,m⊥α⇒n⊥α,正确;故选:D.A,若m⊥n,m∥α时,可能n⊂α或斜交;B,m⊥n,m⊥α⇒n∥α或m⊂α;C,m∥n,m∥α⇒n∥α或m⊂α;D,m∥n,m⊥α⇒n⊥α;本题考查了空间点、线、面的位置关系,属于基础题.6.【答案】B【解析】解:因为△ABC为直角三角形,所以AB为等腰直角三角形的斜边,AB==2,圆心C到直线x+y-m=0的距离为=,∴=,m=±2,故选:B.因为△ABC为直角三角形,所以AB为等腰直角三角形的斜边,AB==2,圆心C到直线x+y-m=0的距离为=,本题考查了直线与圆的位置关系,属中档题.7.【答案】B【解析】解:∵f(x)是奇函数;∴;∵2<log25<log26,20.8<2,且f(x)在R上为减函数;∴;∴b<a<c.故选:B.根据f(x)是奇函数,即可得出a=f(log25),并可得出20.8<2<log25<log26,这样根据f(x)是R上的减函数即可比较出a,b,c的大小关系.考查奇函数的定义,减函数的定义,对数函数和指数函数的单调性.8.【答案】C【解析】解:因为直线l的方程可化为:(x+2)m+2x+3y+1=0,由得,所以直线l过定点(-2,1),又(-2)2+12=5<6,即定点(-2,1)在圆x2+y2=8内,所以直线l与圆C一定相交.故选:C.先求出直线l过定点(-2,1),再判断定点在圆内,可得直线与圆相交.本题考查了直线与圆的位置关系,属中档题.9.【答案】D【解析】解:根据三视图可知几何体是一个圆柱中切去:四分之一的圆柱的一半,且底面圆的半径为2,高为4,∴几何体的体积V=π×22×4-=14π,故选:D.由三视图知该几何体是一个圆柱中切去:四分之一的圆柱的一半,由三视图求出几何元素的长度,由柱体的体积公式求出几何体的体积.本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,注意三视图中实线与虚线的在直观图中的位置,考查空间想象能力.10.【答案】A【解析】解:取A1B1的中点O,连结OC1、OB,∵在三棱柱ABC-A1B1C1中,底面ABC是等边三角形,AA1⊥底面ABC,∴C1C⊥平面A1B1C1,C1O⊥A1B1,∵AA1∥CC1,∴C1O⊥AA1,∴∠BC1O是直线BC1与平面ABB1A1所成角,∵AB=2,AA1=1,∴BC1==,C1O==,∴直线BC1与平面ABB1A1所成角的正弦值sin∠BC1O===.故选:A.取A1B1的中点O,连结OC1、OB,则C1C⊥平面A1B1C1,C1O⊥A1B1,由AA1∥CC1,得C1O⊥AA1,从而∠BC1O是直线BC1与平面ABB1A1所成角,由此能求出直线BC1与平面ABB1A1所成角的正弦值.本题考查直线与平面所成角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.11.【答案】A【解析】解:∵函数f(x)=loga(2x+b-1)是增函数,令t=2x+b-1,必有t=2x+b-1>0,t=2x+b-1为增函数.∴a>1,∴0<<1,∵当x=0时,f(0)=logab<0,∴0<b<1.又∵f(0)=logab>-1=loga,∴b>,∴0<a-1<b<1.故选:A.利用对数函数和函数图象平移的方法列出关于a,b的不等关系是解决本题的关键.利用好图形中的标注的(0,-1)点.利用复合函数思想进行单调性的判断,进而判断出底数与1的大小关系.本题考查对数函数的图象性质,考查学生的识图能力.考查学生的数形结合能力和等价转化思想.12.【答案】C【解析】解:设圆C上的动点P的坐标为P(3+3cosα,-2+3sinα),.根据定义,D2=PA2+PB2=(3+3cosα+2)2+(-2+3sinα)2+(3+3cosα-0)2+(-2+3sinα-2)2=18cos2α+48cosα+18sin2α-36sinα+54=72+48cosα-36sinα≥72-=72-60=12,故选:C.利用圆的参数方程,结合两点间的距离公式以及acosα+bsinα的最小值为-,即可得到结论.本题主要考查两点间距离公式的应用,利用圆的参数方程以及acosα+bsinα的最小值为-,属于中档题.13.【答案】13【解析】解:==-1,∴f[f()=f(-1)=3-1=.故答案为:.先计算=,即可得出.本题考查了分段函数的定义、对数与指数的运算法则,属于基础题.14.【答案】(1,2,3)【解析】解:长方体ABCD-A1B1C1D1中,已知B1(1,0,3),D(0,2,0),则点C1的横坐标为1,纵坐标为2,竖坐标为3,即C1(1,2,3).故答案为:(1,2,3).由长方体的结构特征,结合题意写出点C1的横坐标、纵坐标和竖坐标.本题考查了空间直角坐标系与长方体的结构特征应用问题,是基础题.15.【答案】x2+y2=4【解析】解:设M(x,y),因为△ABC是直角三角形,所以OM=AB=2定值.故M的轨迹为:以O为圆心,2为半径的圆.故x2+y2=4即为所求.故答案为:x2+y2=4.可以取AB的中点M,根据三

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功