随机过程与数学建模

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

随机过程与数学建模吉林大学方沛辰随机性和确定性是一对矛盾,它们既对立又统一。一般的问题不是能明确划分的,常常两种性质都有,用不同的假设来处理。1.随机型问题随机型问题的最优化常常是对目标函数的数学期望求最优。因此首先需要知道概率分布,再写出目标函数的数学期望的表达式进而解决问题。这里很可能用到求函数的期望。例题:一个私人牙科诊所很受欢迎,病人络绎不绝。来的有病名概率治疗时间平均A1/220分钟10B1/330分钟10C1/690分钟15三种病,一名医生每天上午和下午分别工作3.5小时,都是早8点挂的号,上午和下午分别挂多少号最适合?平均看一个病人的时间显然是35分钟,3.5小时应该看6人。大家想过没有,这样将会有一半的时间不能正常吃午饭!如果6个人都是C病,全看完要9个小时!那我们应该有什么样的结论呢?好像没什么好做的。真正要解决这个问题就要用到随机过程的理论和方法。再举一例:豹在逐渐靠近羊的时候是匍匐前进,一旦羊发现了豹开始逃走时豹就起身追赶。假设羊不能发现50米之外的豹,到了15米羊就必然发现豹,怎样描述羊和豹在相距x米时的发现概率。这是一个很让人深思的问题。从视觉角度看发现一个物体应该和物体的像的面积成正比,这样概率可看作是x的函数p(x),并且是在15处取1,50处取0,中间是递减的,进而是x的二次函数。但是注意p(x)不是密度函数,那它是什么呢?2.随机过程初步知识在概率论中学过随机向量(x1,x2,…,xn),相关学过联合分布、边缘分布、条件分布等概念,一起研究许多个比单个研究方便。把随机向量的概念推广,一起研究无穷多个随机变量,就是随机过程。注意无穷多有两种:可列多和连续多,对应就有随机序列和随机过程两个概念。有限多和无限多有本质区别。例1用x(t,ω)记(0,t)中电话接到的呼叫数。不同的t是不同随机变量,不同的ω是不同的样本曲线。例2用x(t,ω)记微粒在水面布朗运动漂浮时横坐标。例3用x(n,ω),n=1,2,…记相互独立同分布的伯努利随机变量序列,取值0和1,相应概率q和p,称为伯努利过程。取值为0,1,2,…,称为二项计数过程,或随机游动。例4用x(n,ω)记第n代生物群体的数量。1(,)(,)nkYnXk定义设{X(t),t0}是一个随机过程,取定t,X(t)是一个随机变量,它的分布函数(,){()},,[0,)FtxPXtxtTxR称为X(t)的一维分布函数,相应也有一维概率密度等概念。定义设{X(t),t0}是一个随机过程,取定s,t,X(s),X(t)是一个二维随机变量,它的分布函数(,;,){(),()},,,,[0,)FstxyPXsxXtystTxyR称为(X(s),X(t))的二维分布函数。定义设{X(t),t0}是一个随机过程,取定t1,t2,…,tn,X(t1),X(t2),…,X(tn)是一个n维随机变量,它的分布函数111111(,,;,,){(),()},,,,,,[0,)nnnnnnFttxxPXtxXtxttTxxR随机过程的数字特征,对于{(),}XttT称为均值函数;定义:()[()],mtEXttT称为方差函数;()[()],DtDXttT(,)cov[(),()],,CstXsXtstT称为协方差函数;(,)[()()],,RstEXsXtstT称为相关函数;介绍一本教材:研究生教学用书“随机过程及应用”电子科技大学应用数学学院陈良均朱庆棠高教出版社定义:如果对任意的正整数n及任意的t1,t2,…,tn∈T,随机变量X(t1),X(t2),…X(tn)相互独立,称过程是独立过程。3.几种重要的随机过程例伯努利过程是独立过程。定义:如果对任意的正整数n及任意的t1t2…tn,随机过程的增量X(t2)-X(t1),X(t3)-X(t2),…,X(tn)-X(tn-1)相互独立,称过程是独立增量过程。定义:如果独立增量过程对任意的s,t∈T及任意的h0,随机变量X(t+h)-X(s+h)与X(t)-X(s)有相同的概率分布,称过程是平稳的独立增量过程。例二项计数过程是平稳的独立增量过程性质1如果{X(t),t≥0}是平稳独立增量过程,X(0)=0,则(1)均值函数m(t)=mt,m为常数;(2)方差函数D(t)=σ2t,σ为常数;(3)协方差函数C(s,t)=σ2min{s,t}。性质2独立增量过程的有限维分布由一维分布和增量分布确定。定义:给定随机过程{X(t),t∈T}如果对任意的正整数n及任意的t1,t2,…,tn∈T,随机变量X(t1),X(t2),…X(tn)的联合概率分布为n维正态分布,称过程{X(t),t∈T}是正态过程(高斯过程)。定义:如果随机过程{W(t),t∈T}满足下列条件:(1)W(0)=0;(2)E[W(t)]=0;(3)具有独立增量;(4)t0,W(t)~N(0,σ2t),(σ0)称{W(t),t∈T}是参数为σ2的维纳过程。性质1维纳过程是平稳独立增量过程。性质2维纳过程是正态过程。性质3维纳过程是马尔可夫过程。性质4维纳过程是均方连续、均方不可导、均方可积二阶矩过程。性质5维纳过程是非平稳过程,但为平稳独立增量过程。4.泊松过程定义1:如果取非负整数值的计数过程{N(t),t≥0}满足:(1)N(0)=0;(2)具有独立增量;(3)对任意的0≤st,N(t)-N(s)服从参数为λ(t-s)的泊松分布,称{N(t),t≥0}是参数为λ的(齐次)泊松过程。()[()]{()()},0,1,2,...!ktstsPNtNskekk定义2:如果取非负整数值的计数过程{N(t),t≥0}满足:(1)N(0)=0;(2)具有平稳独立增量;(3)P{N(h)=1}=λh+o(h);(4)P{N(h)≥2}=o(h).称{N(t),t≥0}是参数为λ的(齐次)泊松过程。可证,定义1与定义2等价。所以复旦数学系的概率书上的结论是:满足:平稳性、普通性和马尔可夫性三性质的就是泊松过程。泊松过程是非常重要的一种随机过程,应用很广。下面我们仔细学习这个过程。考虑在[0,t)内:(1)到达某超级市场的顾客数N(t);(2)某电话交换台的呼唤数N(t);(3)某车间发生故障的机器数N(t);(4)某计数器收到的粒子数N(t);(5)某通讯系统出现的误码数N(t)等都是典型实例。一维分布对任意的t0,N(t)~P(λt),即(){()}.1,2,...!kttPNtkekk二维分布对任意的ts0{(),()}{(),()()}{()}{()()}().!()!kjkjtPNsjNtkPNsjNtNskjPNsjPNtNskjstsejkj协方差函数C(s,t)=λmin(s,t)相关函数R(s,t)=λmin(s,t)+λ2st泊松过程的性质性质1泊松过程是平稳独立增量过程;性质2泊松过程是马尔可夫过程;性质3泊松过程是生灭过程;性质4泊松过程是均方连续、均方不可导、均方可积的二阶矩过程;性质5泊松过程是非平稳过程,但为平稳增量过程;N(t)表示[0,t)内出现的事件次数,用τ1,τ2,…,τn分别表示第一、二、…、n次事件发生的时间,称τk为事件第k次出现的时间,又叫事件点;Tk表示从第k-1次事件发生到第k次事件的等待时间,又称为点间间距。Tk=τk-τk-1,k=1,2,…n,τ0=0τk=T1+T2+…+Tk,k=1,2,…,n证:{T1t}表示第一次事件在t之后出现,于是{N(t)=0},反之也是,那么{T1t}={N(t)=0},进而P{T1t}=P{N(t)=0}。性质6设{N(t),t≧0}为参数为λ的泊松过程,{Tn,n=1,2,…}为点间间距序列,则Tn,n=1,2,...是相互独立的随机变量,且都服从参数为λ的指数分布。所以FT1(t)=1-P{N(t)=0}=1-e-λt,t0,又显然有FT1(t)=0,t≦0,于是T1服从参数为λ的指数分布。P{T2t∣T1=s1}=P{在(s1,s1+t)内没有事件出现∣T1=s1}=P{N(s1+t)-N(s1)=0}=P{N(t)=0}=e-λt同样得到T2服从指数分布,由增量的独立性知T1与T2独立。再从数学归纳法得证。λ的含义是强度,比如单位时间里进入超市的平均人数,从而1/λ的含义应该是单位人数的时间,即每人的平均间隔时间。几何分布是离散型的无记忆型分布。伯努利实验场合首次成功出现所在的次数服从几何分布。P{η=k}=qk-1p,k=1,2,…无记忆性就是需证:P{η=m+k∣ηm}=P{η=k}.P{=m+k}P{=m+k}{m}{m}mmPPqm+k-1k-1,pq左===pq=右证:指数分布是连续型的无记忆型分布无记忆性就是需证:P{ξs+t∣ξs}=P{ξt}.证:P{s+t}P{s+t}{s}{s}ssPPe-(s+t)-t,e左===e=右两种无记忆分布常被用来描述无磨损性的寿命。比如酒店使用的玻璃杯,用次数记录的寿命。比如窗户上面安装的玻璃,用时间长度记录的寿命。性质7设{N(t),t≧0}为参数为λ的泊松过程,{τn,n=1,2,…}为事件点序列,则τn~Г(n,λ),即概率密度为1,0()()0,0nnttetftnt证:从{τn≦t}={N(t)≧n}知,τn的分布函数1'1()(){}{()},0!()()()()(1)!!(1)!ktnknkknttntknkntFtPtPNtnetkttftFteetekkn当t0时,f(t)=0此性质也可用随机变量的再生性来证明:Tn,n=1,2,...是相互独立且都服从参数为λ的同指数分布的随机变量,指数分布即是Г(1,λ),而Г分布在λ相同的情况下具有再生性,所以τn=T1+T2+…+Tn~Г(n,λ)。更新计数过程:设{N(t),t≧0}是一个计数过程,如果它的点间间距Tn,n=1,2,…相互独立同分布,称为更新计数过程。这是泊松过程的一个推广。{N(t),t≧0}是泊松过程的充分必要条件是它的点间间距Tn,n=1,2,…相互独立同指数分布。定义:如果取非负整数值的计数过程{N(t),t≥0}满足:(1)N(0)=0;(2)具有独立增量;(3)P{N(t+⊿t)-N(t)=1}=λ(t)⊿t+o(⊿t);(4)P{N(h)≥2}=o(⊿t).称{N(t),t≥0}是参数为λ(t)的非齐次泊松过程。复合泊松过程:设{N(t),t≧0}是平均率为λ的齐次泊松过程,{Yn,n=1,2,…}是相互独立同分布的随机变量序列,且二者独立,称为复合泊松过程。()1(),0NtnnXtYt性质:E[X(t)]=λtE(Y)=E[N(t)]·E(Y),这是非常直观的式子;D[X(t)]=λtE(Y2)=E[N(t)]·E(Y2)。5.马尔可夫过程定义对{X(t),t∈T},如果对于任意n个时刻ti0,i=1,2,…,nT1t2…tn有11221111{()(),(),...,()}{()()}nnnnnnnnPXtxXtxXtxXtxPXtxXtx则称{X(t),t∈T}为马尔可夫过程,简称马氏过程,定义中的性质称为马尔可夫性,也是一种无记忆性,称无后效性。定义对马尔可夫过程{X(t),t∈T},条件概率p(s,t;x,y)=P{X(t)y|X(s)=x}称为马氏过程的转移概率函数。X(t)取值的全体称为状态空间,T称为参数集。根据状态空间和参数集的无穷多性质可以分类。离散参数马氏链是一个重要的基础理论部分,有很多结果。对连续参数马氏链我们比较细致地学习。11112211{()(),(),...,()}{()()}nnnnnnnnPXtiXtiXtiXtiPXtiXt

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功