1高中杂化轨道理论(图解)一、原子轨道角度分布图SPxPyPz二、共价键理论和分子结构价键法(VB法)价键理论一:1、要点:⑴、共价键的形成条件:①、先决条件:原子具有未成对电子;②、配对电子参与成键的原子轨道要满足对称匹配、能量相近以及最大重叠的原则;③、两原子具有成单的自旋相反的电子配对,服从保里不相容原理。⑵、共价键的本质:是由于原子相互接近时轨道重叠,原子间通过共用自旋相反的电子使能量降低而成键。⑶、共价键的特征:①、饱和性,一个原子有几个未成对电子(包括激发后形成的未成对电子),便和几个自旋相反的电子配对成键;而未成对电子数是有限的,故形成化学键的数目是有限的。②、根据原子轨道最大重叠原理,原子轨道沿其角度分布最大值方向重叠,即共价键具有一定的方向性。⑷、共价键的类型:单键、双键和叁键。①、σ键和π键。ⅰ、σ键:沿键轴方向重叠,呈圆柱形对称,称为σ轨道,生成的键称为σ键σ是希腊字母,相当于英文的s,是对称Symmetry[`simitri]这个字的第一个字母)。σ键形成的方式:ⅱ、π键:两个p轨道彼此平行地重叠起来,轨道的对称面是通过键轴的平面,这个对称面就叫节面,这样的轨道称为π轨道,生成的键称为π键(π相当于英文的p,是平行parallel[`pærǝlel]的第一个字母)。π键的形成过程:,2σ键和π键的比较σ键(共价键中都存在σ键)π键(只存在不饱和共价键中)重叠方式(成建方向)沿两电子云(原子轨道)的键轴方向以“头碰头”的方式遵循原子轨道最大程度重叠原理进行重叠两互相平行的电子云(原子轨道)以“肩并肩”的方式遵循原子轨道最大程度重叠原理进行重叠重叠程度重叠程度较大重叠程度较小电子云形状共价键电子云(重叠部分)呈轴对称共价键电子云(重叠部分)呈镜像对称牢固程度强度较大,键能大,较牢固,不易断裂强度较小,键能较小,不很牢固,易断裂化学活泼性不活泼,比π键稳定活泼,易发生化学反应类型s-s、s-p、、p-p、s-SP杂化轨道、s-SP2杂化轨道、s-SP3杂化轨道、杂化轨道间p-pπ键,、p-p大π键是否能旋转可绕键轴旋转不可旋转,存在的规律共价单键是σ键,共价双键有一个σ键,有一个π键;共价叁键有一个σ键,有两个π键。可单独存在任何共价键中不单独存在,与σ键共存概念含有未成对(单)电子的原子轨道沿两电叠子云(原子轨道)的键轴方向以“头碰头”的方式遵循原子轨道最大程度重叠原理进行重所形成的具有沿键呈轴对称特征的共价键含有未成对(单)电子的两个互相平行的电子云(原子轨道)以“肩并肩”的方式遵循原子轨道最大程度重叠原理进行重叠所形成的具有镜像对称特征的共价键2、价键理论二:杂化轨道理论,价键理论简明地阐明了共价键的形成过程和本质,成功解释了共价键的方向性和饱和性,但在解释一些分子的空间结构方面却遇到了困难。例如CH4分子的形成,按照价键理论,C原子只有两个未成对的电子,只能与两个H原子形成两个共价键,而且键角应该大约为90°。但这与实验事实不符,因为C与H可形成CH4分子,其空间构型为正四面体,∠HCH=109°28′。为了更好地解释多原子分子的实际空间构型和性质,1931年鲍林和斯莱脱(Slater)在电子配对理论的基础上,提出了杂化轨道理论(hybridorbitaltheory),丰富和发展了现代价键理论。⑴、杂化轨道理论的基本要点原子在形成分子时,为了增强成键能力,同一原子中能量相近的不同类型(s、p、d…)的几个原子轨道可以相互叠加进行重新组合,形成能量、形状和方向与原轨道不同的新的原子轨道。这种原子轨道重新组合的过程称为原子轨道的杂化,所形成的新的原子轨道称为杂化轨道。注意:①、只有在形成分子的过程中,中心原子能量相近的原子轨道才能进行杂化,孤立的原子不可能发生杂化。②、只有能量相近的轨道才能互相杂化。常见的有:nsnpnd,(n-1)dnsnp;③、杂化前后,总能量不变。但杂化轨道在成键时更有利于轨道间的重叠,即杂化轨道的成键能力比未杂化的原子轨道的成键能力增强,形成的化学键的键能大。这是由健型项目3于杂化后轨道的形状发生了变化,电子云分布集中在某一方向上,成键时轨道重叠程度增大,成键能力增强。④、杂化所形成的杂化轨道的数目等于参加杂化的原子轨道的数目,亦即杂化前后,原子轨道的总数不变。⑤、杂化轨道的空间构型取决于中心原子的杂化类型。不同类型的杂化,杂化轨道的空间取向不同,即一定数目和一定类型的原子轨道间杂化所得到的杂化轨道具有确定的空间几何构型,由此形成的共价键和共价分子相应地具有确定的几何构型。什么叫杂化?同一原子的能量相近的原有的原子轨道“混杂”起来,重新组合形成新轨道的过程,叫做杂化。什么叫杂化轨道?新组合的原子轨道叫做杂化轨道。为什么要杂化?杂化轨道形成的化学键的强度更大,体系的能量更低。杂化的动力:受周围原子的影响。为什么杂化后成键,体系的能量降低?杂化轨道在一个方向上更集中,便于轨道最大重叠。杂化轨道的构型决定了分子的几何构型:杂化轨道有利于形成σ键,但不能形成π键。由于分子的空间几何构型是以σ键为骨架,故杂化轨道的构型就决定了其分子的几何构型。杂化的规律杂化前后轨道数目不变,空间取向改变;杂化轨道能与周围原子形成更强的σ键,或安排孤对电子,而不会以空的杂化轨道存在。杂化后轨道伸展方向、形状发生改变,成键能力增强,成键能力大小顺序(s成分越多成键能力越强)spsp2sp3结果当然是更有利于成键!●轨道成分变了●轨道的能量变了●轨道的形状变了⑵、杂化轨道的特点①、所组成的几个杂化轨道具有相同的能量;②、形成的杂化轨道数目等于原有的原子轨道数目;③、杂化轨道的空间伸展方向一定(亦即,杂化轨道的方向不是任意的,杂化轨道之间有一定的夹角);④、杂化轨道的成分:每个杂化轨道的成分之和为1;每个参加杂化的原子轨道,在所有杂化轨道中的成分之和为1(单位轨道的贡献)。杂化轨道理论杂化轨道由原子轨道组合而成用于组合的原子轨道是价层电子的轨道键合电子的轨道非键电子的轨道但不包括π键的轨道杂化轨道类型spsp2sp3参加杂化的原子轨道1个s和1个p1个s和2个p1个s和3个p杂化轨道数目2个sp杂化轨道3个sp2杂化轨道4个sp3杂化轨道每个杂化轨道的成分21s,21p31s,32p41s,43p杂化轨道间的夹角180°120°109°28′空间几何构型直线型平面三角形正四面体形实例BeCl2,HgCl2BF3CH4,SiF4中心原子Be,HgBC,Si⑶、最常见的杂化轨道类型简介4sp杂化轨道sp2杂化轨道sp3杂化轨道①sp杂化轨道:是1个ns轨道与1个np轨道杂化形成2个sp杂化轨道。BeCl2的成键过程,Be原子的杂化。两个sp杂化轨道的夹角为180º,空间构型:直线型。②、SP2杂化轨道:是一个原子的1个nS轨道和2个nP轨道之间进行杂化,形成3个等价的SP2杂化轨道。3个SP2杂化轨道互成120°,sp2杂化形成平面正三角形分子。例如BCl3的成键过程,B原子的杂化。③、SP3杂化轨道:是一个原子的1个S轨道和3个P轨道之间进行杂化,形成4个等价的SP3杂化轨道。4个SP3杂化轨道互成109.5°,sp3杂化形成正四面体结构分子。例如CH4的成键过程,C原子的杂化。↑↑↓↑2p↑↑2s2p激发Be原子基态2s激发态sp杂化sp杂化态↑↑↑↑↓↑2p↑↑↑2s2p激发B原子基态2s激发态sp2杂化sp2杂化态↑↑↑↑↑↑↓↑2p↑↑↑↑2s2p激发C原子基态2s激发态sp3杂化sp3杂化态相关链接:BeCl2是共价化合物,在气态为双聚分子(BeCl2)2(在773~873K下),温度再高时,二聚体解离为单体BeCl2,在1273K完全离解。固态BeCl2具有无限长链结构。在BeCl2(g)中Be为sp杂化,直线型。在双聚体(BeCl2)2(g)中Be为SP2杂化。在固态BeCl2中Be为SP3杂化。MX2spMX3sp2MX4sp35直线型:CO2,BeCl2,[Ag(NH3)2]+,HgCl2,ZnCl2,HC≡CH(C原子sp杂化);Hg原子SP杂化HgCl2直线型分子,两个Π43Π43Π43ClHgCl平面三角形:BF3,SO3(g),NO-3,CO2-3,H2C=CH2(C原子sp2杂化);正四面体形:CH4,SO2-4,SiF4,NH4+,[Zn(NH3)4]2+;ClO4-,MnO-4,MnO2-4(Mn原子d3s杂化);平面正方形:[Cu(NH3)4]2+,[Zn(CN)4]2-,[PdCl4]2-;⑷、等性杂化与s-p型不等性杂化①、等性杂化:由不同类型的原子轨道“混合”起来,重新组合成一组完全等同的杂化轨道的过程称为等性杂化,形成的轨道为等性杂化轨道。各个杂化轨道的形状和能量完全相同。条件:当成键原子中参与杂化的原子轨道上的电子数目等于杂化轨道数目,且与之成键的原子也完全相同,其杂化就是等性杂化。例如,CH4和CCl4…与中心原子键合的是同一种原子,分子呈高度对称的正四面体构型,其中的4个sp3杂化轨道自然没有差别,这种杂化类型叫做等性杂化。CH4甲烷分子中的C原子,用1个2S轨道和2Px、2Py、2Pz轨道进行SP3杂化,SP3杂化轨道呈正四面体。成键的C原子以4个SP3杂化轨道分别与4个H原子的1S轨道形成4个C-Hσ键,形成正四面体结构分子。②、不等性杂化:由不同类型的原子轨道“混合”起来,重新组合成一组不完全等同的杂化轨道(形成的杂化轨道的能量不完全相等,所含的成分也不完全相同)的过程称为不等性杂化,形成的轨道为不等性杂化轨道。参与杂化的原子轨道中存在孤对电子,则形成的杂化轨道的形状和能量不完全相同。条件:ⅰ、当成键原子中参与杂化的原子轨道上的电子数目等于杂化轨道数目,但是与之成键的原子不完全相同,其杂化就是不等性杂化。例如,CHCl3和CH2Cl2…(另一种看法是:等性杂化并不表示形成的共价键等同。例如,CHCl3为变形四面体,分子中三个C-Cl键与C-H键并不等同,但C采取的杂化方式仍是sp3等性杂化。)ⅱ、当成键原子中参与杂化的原子轨道上的电子数目多于杂化轨道数目,有的杂化轨道上必然会被孤对电子所占据,而被孤电子对占据的杂化轨道所含的s成分比单个电子占据的杂化轨道含的s成分略大,更靠近中心原子的原子核,对成键电子对具有一定的排斥作用,参与成键杂化轨道具有更多的p轨道特征,此时,虽然与之成键的原子完全相同,其杂化就是不等性杂化。例如,H2O中的O、NH3分子中的N和CH4分子中的C一样,采取的是SP3杂化。但由于H2O、NH3分子中保留有孤对电子,四个杂化轨道中只有部分参与成键,为不等性杂化,因此分子的形状是不对称的。(CH4分子中的键角109°28′,NH3分子中的键角107°18′,H2O分子中的键角104°45′。)判断是否等性杂化,要看各条杂化轨道的能量是否相等,不能看未参加杂化的轨道的能量。H2O“V”字形,NH3和H3O+三角锥形,CHCl3和CH2Cl2、CH3Cl变形四面体形…NH3分子↑↑↑↑↑↑↑↓↑↓ααα2s2pN原子基态sp3杂化1-3α(α代表含s成分)不等性sp3杂化轨道6H2O分子↑↓↑↑↑↑↑↓↑↓↑↓2s2pO原子基态sp3杂化不等性sp3杂化轨道⑸、部分杂化①、CO2CO2直线型分子两个Π43C原子SP杂化O—C—OΠ43Π43,OO2Px2Py2PzOO2Px2Py2PzC2s2p激发杂化SP杂化2Py2Pz②、乙烯分子中的C原子,用1个2S轨道和2Px、2Py轨道进行SP2杂化,SP2杂化轨道呈平面正三角形。成键的2个C原子各以1个SP2杂化轨道彼此重叠形成1个C-Cσ键,并各以两个SP2杂化轨道分别与2个H原子的1S轨道形成2个C-Hσ键,这5个σ键其对称轴都在同一平面内。每个C原子余下的2Pz轨道彼此平行地重叠,形成π键。C原子SP2杂化轨道↑↑↑未参加杂化的Pz轨道↑⊥SP2杂化轨道平面③、乙炔分子中的C原子,用1个2S轨道和1个2Px轨道进行SP杂化,SP杂化轨道呈直线形。成键的2个C原子