《数学分析》第十三章-函数列与函数项级数-4

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十三章函数列与函数项级数习题课1、函数项级数(1)定义设),(,),(),(21xuxuxun是定义在RI上的函数,则)()()()(211xuxuxuxunnn称为定义在区间I上的(函数项)无穷级数.(2)收敛点与收敛域如果Ix0,数项级数10)(nnxu收敛,则称0x为级数)(1xunn的收敛点,否则称为发散点.所有发散点的全体称为发散域.函数项级数)(1xunn的所有收敛点的全体称为收敛域,(3)和函数在收敛域上,函数项级数的和是x的函数)(xs,称)(xs为函数项级数的和函数.7、幂级数展开式如果)(xf在点0x处任意阶可导,则幂级数nnnxxnxf)(!)(000)(称为)(xf在点0x的泰勒级数.nnnxnf0)(!)0(称为)(xf在点0x的麦克劳林级数.(1)定义定理)(xf在点0x的泰勒级数,在)(0xU内收敛于)(xf在)(0xU内0)(limxRnn.(2)充要条件(3)唯一性定理如果函数)(xf在)(0xU内能展开成)(0xx的幂级数,即nnnxxaxf)()(00,则其系数),2,1,0()(!10)(nxfnann且展开式是唯一的.(3)展开方法a.直接法(泰勒级数法)步骤:;!)()1(0)(nxfann求,)(0lim)2()(MxfRnnn或讨论).(xf敛于则级数在收敛区间内收b.间接法根据唯一性,利用常见展开式,通过变量代换,四则运算,恒等变形,逐项求导,逐项积分等方法,求展开式.),(!1!2112xxnxxenx)!12()1(!51!31sin1253nxxxxxnn),(x)!2()1(!41!211cos242nxxxxnn),(x(4)常见函数展开式

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功