1导数模拟及高考题一.选择题(共23小题)1.(2015•重庆一模)函数f(x)=x3+bx2+cx+d,图象如图,则函数的单调递减区间为()2.(2014•郑州一模)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3B.2C.1D.3.(2014•郑州模拟)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.4.(2014•西藏一模)已知曲线的一条切线的斜率为,则切点的横坐标为()A.1B.2C.3D.45.(2014•广西)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.16.(2014•陕西)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣17.(2014•山东)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2B.4C.2D.48.(2014•浙江)已知函数f(x)=x3+ax2+bx+c,其0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>99.(2014•包头一模)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或110.(2013•聊城一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2B.C.D.﹣211.(2013•北京)直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于()A.B.2C.D.12.(2013•福建)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.﹣x0是f(﹣x)的极小值点C.﹣x0是﹣f(x)的极小值点D.﹣x0是﹣f(﹣x)的极小值点13.(2013•辽宁)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值14.(2013•浙江)已知e为自然对数的底数,设函数f(x)=(ex﹣1)(x﹣1)k(k=1,2),则()A.[,+∞)B.[3,+∞)C.[﹣2,3]D.(﹣∞,﹣2)2A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值15.(2012•辽宁)函数y=x2﹣lnx的单调递减区间为()A.(﹣1,1]B.(0,1]C.[1,+∞)D.(0,+∞)16.(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=﹣2处取得极小值,则函数y=xf′(x)的图象可能是()A.B.C.D.17.(2012•陕西)设函数f(x)=+lnx则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点18.(2012•陕西)设函数f(x)=xex,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点19.(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(﹣2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(﹣2)D.函数f(x)有极大值f(﹣2)和极小值f(2)20.(2012•辽宁)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,﹣2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为()A.1B.3C.﹣4D.﹣821.(2012•湖北)已知二次函数y=f(x)的图象如图所示,则它与X轴所围图形的面积为()22.(2011•江西)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞)B.(﹣1,0)∪(2,+∞)C.(2,+∞)D.(﹣1,0)23.(2011•浙江)设函数f(x)=ax2+bx+c(a,b,c∈R),若x=﹣1为函数y=f(x)ex的一个极值点,则下列图象不可能为y=f(x)的图象是()A.B.C.D.A.B.C.D.3二.解答题(共7小题)24.(2014•广西)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.25.(2014•重庆)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.26.(2014•重庆)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.27.(2014•北京)已知函数f(x)=2x3﹣3x.(Ⅰ)求f(x)在区间[﹣2,1]上的最大值;(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)28.(2014•山东)设函数f(x)=alnx+,其中a为常数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性.429.(2014•福建)已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<ex;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<cex.30.(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.导数模拟及高考参考答案与试题解析一.选择题(共23小题)1.(2015•重庆一模)函数f(x)=x3+bx2+cx+d,图象如图,则函数的单调递减区间为()A.[,+∞)B.[3,+∞)C.[﹣2,3]D.(﹣∞,﹣2)考点:利用导数研究函数的单调性;复合函数的单调性.菁优网版权所有专题:导数的综合应用.分析:求出原函数的导函数,由图象得到f′(﹣2)=f(3)=0,联立求得b,c的值,代入g(x)=,由g(x)>0求得x的范围,再由导数求出函数g(x)的减区间,则函数的单调递减区间可求.解答:解:∵f(x)=x3+bx2+cx+d,∴f′(x)=3x2+2bx+c,由图可知f′(﹣2)=f(3)=0.5∴,解得.令g(x)=,则g(x)=x2﹣x﹣6,g′(x)=2x﹣1.由g(x)=x2﹣x﹣6>0,解得x<﹣2或x>3.当x<时,g′(x)<0,∴g(x)=x2﹣x﹣6在(﹣∞,﹣2)上为减函数.∴函数的单调递减区间为(﹣∞,﹣2).故选:D.点评:本题考查了利用导数研究函数的单调性,训练了简单的复合函数单调性的求法,关键是注意函数的定义域,是中档题.2.(2014•郑州一模)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3B.2C.1D.考点:导数的几何意义.菁优网版权所有分析:根据斜率,对已知函数求导,解出横坐标,要注意自变量的取值区间.解答:解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.点评:考查导数的几何意义,属于基础题,对于一个给定的函数来说,要考虑它的定义域.比如,该题的定义域为{x>0}.3.(2014•郑州模拟)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.考点:导数的几何意义.菁优网版权所有专题:压轴题.分析:(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.解答:解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.点评:函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率,过点P的切线方程为:y﹣y0=f′(x0)(x﹣x0)64.(2014•西藏一模)已知曲线的一条切线的斜率为,则切点的横坐标为()A.1B.2C.3D.4考点:导数的几何意义.菁优网版权所有分析:利用导数的几何意义,列出关于斜率的等式,进而得到切点横坐标.解答:解:已知曲线的一条切线的斜率为,∵=,∴x=1,则切点的横坐标为1,故选A.点评:函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率.应熟练掌握斜率与导数的关系.5.(2014•广西)曲线y=xex﹣1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.1考点:导数的几何意义.菁优网版权所有专题:导数的概念及应用.分析:求函数的导数,利用导数的几何意义即可求出对应的切线斜率.解答:解:函数的导数为f′(x)=ex﹣1+xex﹣1=(1+x)ex﹣1,当x=1时,f′(1)=2,即曲线y=xex﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.点评:本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.6.(2014•陕西)定积分(2x+ex)dx的值为()A.e+2B.e+1C.eD.e﹣1考点:定积分.菁优网版权所有专题:导数的概念及应用.分析:根据微积分基本定理计算即可解答:解:(2x+ex)dx=(x2+ex)=(1+e)﹣(0+e0)=e.故选:C.点评:本题主要考查了微积分基本定理,关键是求出原函数.7.(2014•山东)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2B.4C.2D.4考点:定积分.菁优网版权所有专题:导数的综合应用.分析:先根据题意画出区域,然后然后依据图形得到积分上限为2,积分下限为0的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.解答:解:先根据题意画出图形,得到积分上限为2,积分下限为0,曲线y=x3与直线y=4x在第一象限所围成的图形的面积是∫02(4x﹣x3)dx,而∫02(4x﹣x3)dx=(2x2﹣x4)|02=8﹣4=4∴曲边梯形的面积是4,7故选:D.点评:考查学生会求出原函数的能力,以及会利用定积分求图形面积的能力,同时考查了数形结合的思想,属于基础题.8.(2014•浙江)已知函数f(x)=x3+ax2+bx+c,其0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9考点:函数在某点取得极值的条件.菁优网版权所有专题:导数的概念及应用.分析:由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b代入0<f(﹣1)≤3求出c的范围.解答:解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选C.点评:本题考查方程组的解法及不等式的解法,属于基础题.9.(2014•包头一模)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1考点:利用导数研究函数的极值;函数的零点与方程根的关系.菁优网版权所有专题:计算题.分析:求导函数,确定函数的单调性,确