2016年春新北师大版八年级数学下册 全册教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

北师大版八年级数学下册教案第1页共203页第一章三角形的证明【单元分析】本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了8条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论。运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论。在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础。【单元目标】1.知识与技能(1)等腰三角形的性质和判定定理;(2)直角三角形的性质定理和判定定理;2.过程与方法(1)会运用等腰三角形的性质和判定定理解决相关问题;(2)直角三角形的性质定理和判定定理解决简单的实际问题;3.情感态度与价值观(1)经历由情景引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力;(2)感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。【单元重点】在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理。【单元难点】明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。【教学思路】1.对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。2.对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。3.证明过程中注意揭示蕴含其中的数学思想方法,如转化、归纳、类比等。4.作为初中阶段几何证明的最后阶段,教学中应要求学生掌握综合法和分析法证明命题的基本要求,掌握规范的证明表述过程,达成课程标准对证明表述的要求。【单元课时安排】课题课时1.1等腰三角形4课时1.2直角三角形2课时1.3线段的垂直平分线2课时1.4角平分线2课时回顾与思考2课时北师大版八年级数学下册教案第2页共203页1.1等腰三角形【教学目标】1.知识与技能理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理。2.过程与方法经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力。3.情感态度与价值观启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系。【教学重点】经历“探索——发现一一猜想——证明”的过程。【教学难点】用综合法证明有关三角形和等腰三角形的一些结论。【教学方法】讲授法【课时安排】4课时第一课时【教学目标】1.知识与技能能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理。2.过程与方法经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力。3.情感态度与价值观启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系。【教学重点】探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法。【教学难点】明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。【教学过程】教学过程教学随笔第一环节:回顾旧知导出公理提请学生回忆并整理已经学过的8条基本事实中的5条:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等(SAS);4.两角及其夹边对应相等的两个三角形全等(ASA);5.三边对应相等的两个三角形全等(SSS);在此基础上回忆全等三角形的另一判别条件:1.(推论)两角及其中一北师大版八年级数学下册教案第3页共203页角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理进行证明;2.回忆全等三角形的性质。已知:如图,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明:∵∠A=∠D,∠B=∠E(已知),又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E),∴∠C=∠F(等量代换)。又BC=EF(已知),∴△ABC≌△DEF(ASA)。第二环节:折纸活动探索新知在提问:“等腰三角形有哪些性质?以前是如何探索这些性质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些性质的证明吗?”的基础上,让学生经历这些定理的活动验证和证明过程。具体操作中,可以让学生先独自折纸观察、探索并写出等腰三角形的性质,然后再以六人为小组进行交流,互相弥补不足。第三环节:明晰结论和证明过程在学生小组合作的基础上,教师通过分析、提问,和学生一起完成以上两个个性质定理的证明,注意最好让两至三个学生板演证明,其余学生挑选其一证明.其后,教师通过课件汇总各小组的结果以及具体证明方法,给学生明晰证明过程。(1)等腰三角形的两个底角相等;(2)等腰三角形顶角的平分线、底边中线、底边上高三条线重合第四环节:随堂练习巩固新知学生自主完成P4第2题:如图(图略),在△ABD中,C是BD上的一点,且AC⊥BD,AC=BC=CD,(1)求证:△ABD是等腰三角形;(2)求∠BAD的度数。第五环节:课堂小结让学生畅谈收获,包括具体结论以及其中的思想方法等。第六环节:布置作业课本第4页习题1.1第2、3题【板书设计】1.1等腰三角形(一)证明:∵∠A=∠D,∠B=∠E(已知),又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),∴∠C=180°-(∠A+∠B),→→DCBADCBAD(C)BA北师大版八年级数学下册教案第4页共203页∠F=180°-(∠D+∠E),∴∠C=∠F(等量代换)。又BC=EF(已知),∴△ABC≌△DEF(ASA)。【教学反思】第二课时【教学目标】1.知识与技能进一步熟悉证明的基本步骤和书写格式,体会证明的必要性。2.过程与方法让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力。3.情感态度与价值观体验数学活动中的探索与创造,感受数学的严谨性。【教学重点】用面积法验证勾股定理。【教学难点】用综合法证明有关三角形和等腰三角形的一些结论。【教学过程】教学过程教学随笔第一环节:提出问题,引入新课在回忆上节课等腰三角形性质的基础上,提出问题:在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一第二环节:自主探究在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。你可能得到哪些相等的线段?你如何验证你的猜测?你能证明你的猜测吗?试作图,写出已知、求证和证明过程;还可以有哪些证明方法?通过学生的自主探究和同伴的交流,学生一般都能在直观猜测、测量验北师大版八年级数学下册教案第5页共203页证的基础上探究出:等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.并对这些命题给予多样的证明。如对于“等腰三角形两底角的平分线相等”,学生得到了下面的证明方法:已知:如图,在△ABC中,AB=AC,BD、CE是△ABC的角平分线.求证:BD=CE.证法1:∵AB=AC,∴∠ABC=∠ACB(等边对等角).∵∠1=12∠ABC,∠2=12∠ABC,∴∠1=∠2.在△BDC和△CEB中,∠ACB=∠ABC,BC=CB,∠1=∠2.∴△BDC≌△CEB(ASA).∴BD=CE(全等三角形的对应边相等)证法2:证明:∵AB=AC,∴∠ABC=∠ACB.又∵∠3=∠4.在△ABC和△ACE中,∠3=∠4,AB=AC,∠A=∠A.∴△ABD≌△ACE(ASA).∴BD=CE(全等三角形的对应边相等).第三环节:经典例题变式练习提请学生思考,除了角平分线、中线、高等特殊的线段外,还可以有哪些线段相等?并在学生思考的基础上,研究课本“议一议”:在课本图1—4的等腰三角形ABC中,(1)如果∠ABD=13∠ABC,∠ACE=14∠ACB呢?由此,你能得到一个什么结4231EDCBA北师大版八年级数学下册教案第6页共203页论?(2)如果AD=12AC,AE=12AB,那么BD=CE吗?如果AD=13AC,AE=13AB呢?由此你得到什么结论?第四环节:拓展延伸,探索等边三角形性质提请学生在上面等要三角形性质定理的基础上,思考等边三角形的特殊性质:等边三角形三个内角都相等并且每个内角都等于60°.已知:在ΔABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角).同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).又∵∠A+∠B+∠C=180°(三角形内角和定理),∴∠A=∠B=∠C=60°.学生一般都能得到这些定理的证明,能规范地写出对于“等边三角形三个内角都相等并且每个内角都等于60°”的证明过程:第五环节:随堂练习及时巩固在探索得到了等边三角形的性质的基础上,让学生独立完成以下练习。1.如图,已知△ABC和△BDE都是等边三角形.求证:AE=CD活动意图:在巩固等边三角形的性质的同时,进一步掌握综合证明法的基本要求和步骤,规范证明的书写格式。第六环节:探讨收获课时小结本节课我们通过观察探索、发现并证明了等腰三角形中相等的线段,并由特殊结论归纳出一般结论,第七环节:布置作业课本第7页习题1.2第2、3题【板书设计】1.2等腰三角形(二)已知:在ΔABC中,AB=BC=AC.EDCBA北师大版八年级数学下册教案第7页共203页求证:∠A=∠B=∠C=60°.证明:在ΔABC中,∵AB=AC,∴∠B=∠C(等边对等角).同理:∠C=∠A,∴∠A=∠B=∠C(等量代换).又∵∠A+∠B+∠C=180°(三角形内角和定理),∴∠A=∠B=∠C=60°.【教学反思】第三课时【教学目标】1.知识与技能探索等腰三角形判定定理。2.过程与方法理解等腰三角形的判定定理,并会运用其进行简单的证明。3.情感态度与价值观培养学生的逆向思维能力。【教学重点】理解等腰三角形的判定定理。【教学难点】了解反证法的基本证明思路,并能简单应用。【教学过程】教学过程教学随笔第一环节:复习引入通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。问题1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2.我们是如何证明上述定理的?问题3.我们把性质定理的条件和结论反过来还成立么?如果一个三角形有两个角相等,那么这两个角所对的边也相等?第二环节:逆向思考,定理证明教师:上面,我们改变问题条件,得出了很多类似的结论,这是研究问题的一种常用方法,除此之外,我们还可以“反过来”思考问题,这也是获得数学结论的一条途径.例如“等边对等角”,反过来成立吗?也就是:有两个角相等的三角形是等腰三角形吗?[生]如图,在△ABC中,∠B=∠C,要想证明AB=AC,只要构造两个全等的三角形,使AB与AC成为对应边就可以了.[师]你是如何想到的?[生]由前面定理的证明获得启发,比如作BC的中线,CBA北师大版八年级数学下册教案第8页共203页或作A的平分线,或作BC上的高,都可以把△ABC分成两个全等的三角形.[师]很好.同学们可在练习本上尝试一下是否如此,然后分组讨论.[生]我们组发现,如果作BC的中线,虽然把△ABC分成了两个三角形,但无法用公理和已证明的定理证明它们全等.因为我们得到的条件是两个三角形对应两边及其一边的对角分别相等,是不能够判断两个三角形全等的

1 / 203
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功