中考数学(解直角三角形)压轴题解析1.(2012绍兴)如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°。(1)求一楼于二楼之间的高度BC(精确到0.01米);(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,con32°=0.8480,tan32°=6249。考点:解直角三角形的应用-坡度坡角问题。解答:解:(1)sin∠BAC=BCAB,∴BC=AB×sin32°=16.50×0.5299≈8.74米。(2)∵tan32°=级高级宽,∴级高=级宽×tan32°=0.25×0.6249=0.156225∵10秒钟电梯上升了20级,∴小明上升的高度为:20×0.156225≈3.12米。2.(2012•扬州)如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题。专题:应用题;数形结合。分析:作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD=20海里可得出方程,解出x的值后即可得出答案.解答:解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°,设CD=x,在RT△ACD中,可得AD=x,在RT△ABD中,可得BD=x,又∵BC=20,即xx=20,解得:∴AC=x≈10.3(海里).答:A、C之间的距离为10.3海里.点评:此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.3.(2012•连云港)已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)考点:解直角三角形的应用-方向角问题。分析:根据在Rt△ADB中,sin∠DBA=,得出AB的长,进而得出tan∠BAH=,求出BH的长,即可得出AH以及CH的长,进而得出答案.解答:解:BC=40×=10,在Rt△ADB中,sin∠DBA=,sin53.2°≈0.8,所以AB==20,如图,过点B作BH⊥AC,交AC的延长线于H,在Rt△AHB中,∠BAH=∠DAC-∠DAB=63.6°-37°=26.6°,tan∠BAH=,0.5=,AH=2BH,BH2+AH2=AB2,BH2+(2BH)2=202,BH=4,所以AH=8,在Rt△BCH中,BH2+CH2=BC2,CH=2,所以AC=AH-CH=8-2=6≈13.4,答:此时货轮与A观测点之间的距离AC约为13.4km.点评:此题主要考查了解直角三角形中方向角问题,根据已知构造直角三角形得出BH的长是解题关键.4.(2012广东)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题。解答:解:∵在直角三角形ABC中,=tanα=,∴BC=∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:小山岗的高度为300米.5.(2012安顺)丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出BE、CD的长度(精确到个位,≈1.7).考点:解直角三角形的应用。解答:解:由∠ABC=120°可得∠EBC=60°,在Rt△BCE中,CE=51,∠EBC=60°,因此tan60°=,∴BE===17≈29cm;在矩形AECF中,由∠BAD=45°,得∠ADF=∠DAF=45°,因此DF=AF=51,∴FC=AE≈34+29=63cm,∴CD=FC﹣FD≈63﹣51=12cm,因此BE的长度均为29cm,CD的长度均为12cm.6.(2012•资阳)小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).考点:解直角三角形的应用-仰角俯角问题。分析:连接PA、PB,过点P作PM⊥AD于点M;延长BC,交PM于点N,将实际问题中的已知量转化为直角三角形中的有关量,设PM=x米,在Rt△PMA中,表示出AM,在Rt△PNB中,表示出BN,由AM+BN=46米列出方程求解即可.解答:解:连接PA、PB,过点P作PM⊥AD于点M;延长BC,交PM于点N则∠APM=45°,∠BPM=60°,NM=10米设PM=x米在Rt△PMA中,AM=PM×tan∠APM=xtan45°=x(米)在Rt△PNB中,BN=PN×tan∠BPM=(x﹣10)tan60°=(x﹣10)(米)由AM+BN=46米,得x+(x﹣10)=46解得,,∴点P到AD的距离为米.(结果分母有理化为米也可)点评:此题考查了解直角三角形的知识,作出辅助线,构造直角三角形是解题的关键.7.(2012•湘潭)如图,矩形ABCD是供一辆机动车停放的车位示意图,已知BC=2m,CD=5.4m,∠DCF=30°,请你计算车位所占的宽度EF约为多少米?(,结果保留两位有效数字.)考点:解直角三角形的应用。分析:分别在直角三角形BCF和直角三角形AEF中求得DF和DE的长后相加即可得到EF的长.解答:解:在直角三角形DCF中,∵CD=5.4m,∠DCF=30°,∴sin∠DCF===,∴DF=2.7,∵∠CDF+∠DCF=90°∠ADE+∠CDF=90°,∴∠ADE=∠DCF,∵AD=BC=2,∴cos∠ADE===,∴DE=,∴EF=ED+DF=2.7+1.732≈4.4米.点评:本题考查了解直角三角形的应用,如何从纷杂的实际问题中整理出直角三角形是解决此类题目的关键.8.(2012娄底)如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB的高度(结果保留两位有效数字,≈1.732).考点:解直角三角形的应用-仰角俯角问题。分析:首先根据题意可得GB=EF=CD=1.5米,DF=CE=8米,然后设AG=x米,GF=y米,则在Rt△AFG与Rt△ADG,利用正切函数,即可求得x与y的关系,解方程组即可求得答案.解答:解:根据题意得:四边形DCEF、DCBG是矩形,∴GB=EF=CD=1.5米,DF=CE=8米,设AG=x米,GF=y米,在Rt△AFG中,tan∠AFG=tan60°===,在Rt△ADG中,tan∠ADG=tan30°===,∴x=4,y=4,∴AG=4米,FG=4米,∴AB=AG+GB=4+1.5≈8.4(米).∴这棵树AB的高度为8.4米.点评:本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想与方程思想的应用.9.(2012江西)如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB.CD相交于点O,B.D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学记算器)考点:相似三角形的应用;解直角三角形的应用。分析:(1)根据等角对等边得出∠OAC=∠OCA=(180°﹣∠BOD)和∠OBD=∠ODB=(180°﹣∠BOD),进而利用平行线的判定得出即可;(2)首先作OM⊥EF于点M,则EM=16cm,利用cos∠OEF=0.471,即可得出∠OEF的度数;(3)首先证明Rt△OEM∽Rt△ABH,进而得出AH的长即可.解答:(1)证明:证法一:∵AB.CD相交于点O,∴∠AOC=∠BOD…1分∵OA=OC,∴∠OAC=∠OCA=(180°﹣∠BOD),同理可证:∠OBD=∠ODB=(180°﹣∠BOD),∴∠OAC=∠OBD,…2分∴AC∥BD,…3分证法二:AB=CD=136cm,OA=OC=51cm,∴OB=OD=85cm,∴…1分又∵∠AOC=∠BOD∴△AOC∽△BOD,∴∠OAC=∠OBD;…2分∴AC∥BD…3分;(2)解:在△OEF中,OE=OF=34cm,EF=32cm;作OM⊥EF于点M,则EM=16cm;…4分∴cos∠OEF=0.471,…5分用科学记算器求得∠OEF=61.9°…6分;(3)解法一:小红的连衣裙会拖落到地面;…7分在Rt△OEM中,=30cm…8分,过点A作AH⊥BD于点H,同(1)可证:EF∥BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴…9分所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.解法二:小红的连衣裙会拖落到地面;…7分同(1)可证:EF∥BD,∴∠ABD=∠OEF=61.9°;…8分过点A作AH⊥BD于点H,在Rt△ABH中,AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm…9分所以:小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.点评:此题主要考查了相似三角形的判定与性质以及解直角三角形,根据已知构造直角三角形利用锐角三角函数解题是解决问题的关键.10.(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退.2012年5月18日,某国3艘炮艇追袭5条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政310”船人船未歇立即追往北纬11度22分、东经110度45分附近海域护渔,保护100多名中国渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图1)解决问题如图2,已知“中国渔政310”船(A)接到陆地指挥中心(B)命令时,渔船(C)位于陆地指挥中心正南方向,位于“中国渔政310”船西南方向,“中国渔政310”船位于陆地指挥中心南偏东60°方向,AB=海里,“中国渔政310”船最大航速20海里/时.根据以上信息,请你求出“中国渔政310”船赶往出事地点需要多少时间.考点:解直角三角形的应用-方向角问题。分析:过点A作AD⊥BC于点D,在Rt△ABD中利用锐角三角函数的定义求出AD的值,同理在Rt△ADC中求出AC的值,再根据中国渔政310”船最大航速20海里/时求出所需时间即可.解答:解:过点A作AD⊥BC于点D,在Rt△ABD中,∵AB=,∠B=60°,∴AD=AB•sin60°=×=70,在Rt△ADC中,AD=70,∠C=45°,∴AC=AD=140,∴“中国