Single-Image-Super-Resolution-Using-Multi-Scale-Co

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

SingleImageSuper-ResolutionUsingMulti-ScaleConvolutionalNeuralNetworkXiaoyiJia,XiangminXu()?,BolunCai,andKailingGuoSchoolofElectronicandInformationEngineeringSouthChinaUniversityofTechnology,Guangzhou,Chinaxy_jia@foxmail.com,xmxu@scut.edu.cn,{caibolun,eecollinguo}@gmail.comAbstract.Methodsbasedonconvolutionalneuralnetwork(CNN)havedemonstratedtremendousimprovementsonsingleimagesuper-resolution.However,thepreviousmethodsmainlyrestoreimagesfromonesingleareainthelowresolution(LR)input,whichlimitstheexibilityofmodelstoinfervariousscalesofdetailsforhighresolution(HR)out-put.Moreover,mostofthemtrainaspeci cmodelforeachup-scalefactor.Inthispaper,weproposeamulti-scalesuperresolution(MSSR)network.Ournetworkconsistsofmulti-scalepathstomaketheHRin-ference,whichcanlearntosynthesizefeaturesfromdi erentscales.ThispropertyhelpsreconstructvariouskindsofregionsinHRimages.Inaddition,onlyonesinglemodelisneededformultipleup-scalefactors,whichismoreecientwithoutlossofrestorationquality.Experimentsonfourpublicdatasetsdemonstratethattheproposedmethodachievedstate-of-the-artperformancewithfastspeed.Keywords:Super-resolution,convolutionalneuralnetwork,multi-scale1IntroductionThetaskofsingleimagesuper-resolutionaimsatrestoringahigh-resolution(HR)imagefromagivenlow-resolution(LR)one.Super-resolutionhaswideapplicationsinmany eldswhereimagedetailsareondemand,suchasmedi-cal,remotesensingimaging,videosurveillance,andentertainment.Inthepastdecades,super-resolutionhasattractedmuchattentionfromcomputervisioncommunities.Earlymethodsincludebicubicinterpolation[5],Lanczosresam-pling[9],statisticalpriors[15],neighborembedding[4],andsparsecoding[23].However,super-resolutionishighlyill-posedsincetheprocessfromHRtoLRcontainsnon-invertibleoperationsuchaslow-pass lteringandsubsampling.Deepconvolutionalneuralnetworks(CNNs)haveachievedstate-of-the-artperformanceincomputervision,suchasimageclassi cation[20],objectdetec-tion[10],andimageenhancement[3].Recently,CNNsarewidelyusedtoaddress?ThisworkissupportedbytheNationalNaturalScienceFoundationofChina(61171142,61401163,U1636218),theScienceandtechnologyPlanningProjectofGuangdongProvinceofChina(2014B010111003,2014B010111006),GuangzhouKeyLabofBodyDataScience(201605030011).arXiv:1705.05084v1[cs.CV]15May20172X.Jiaetal.theill-posedinverseproblemofsuper-resolution,andhavedemonstratedsupe-riorityovertraditionalmethods[9,15,4,23]withrespecttobothreconstructionaccuracyandcomputationaleciency.Dongetal.[6,7]successfullydesignasuper-resolutionconvolutionalneuralnetwork(SRCNN)todemonstratethataCNNcanbeappliedtolearnthemappingfromLRtoHRinanend-to-endmanner.Afastsuper-resolutionconvolutionalneuralnetwork(FSRCNN)[8]isproposedtoacceleratethespeedofSRCNN[6,7],whichtakestheoriginalLRimageasinputandadoptsadeconvolutionlayertoreplacethebicubicinterpo-lation.In[19],anecientsub-pixelconvolutionlayerisintroducedtoachieverealtimeperformance.Kimetal.[14]usesaverydeepsuper-resolution(VDSR)networkwith20convolutionallayers,whichgreatlyimprovestheaccuracyofthemodel.ThepreviousmethodsbasedonCNNhasachievedgreatprogressontherestorationqualityaswellaseciency.However,therearesomelimitationsmainlycomingfromthefollowingaspects:{CNNbasedmethodsmakee ortstoenlargethereceptive eldofthemodelsaswellasstackmorelayers.TheyreconstructanytypeofcontentsfromLRimagesusingonlysingle-scaleregion,thusignorethevariousscalesofdi erentdetails.Forinstance,restoringthedetailintheskyprobablyreliesonalagerimageregion,whilethetinytextmayonlyberelevanttoasmallpatch.{Mostpreviousapproacheslearnaspeci cmodelforonesingleup-scalefac-tor.Therefore,themodellearnedforoneup-scalefactorcannotworkwellforanother.Thatis,manyscale-speci cmodelsshouldbetrainedfordi er-entup-scalefactors,whichisinecientbothintermsoftimeandmemory.Though[14]trainsamodelformultipleup-scales,itignoresthefactthatasinglereceptive eldmaycontaindi erentinformationamountinvariousresolutionversions.Inthispaper,weproposeamulti-scalesuperresolution(MSSR)convolu-tionalneuralnetworktoissuetheseproblems{therearetwofoldsofmeaninginthetermmulti-scale.First,theproposednetworkcombinesmulti-pathsubnet-workswithdi erentdepth,whichcorrespondtomulti-scaleregionsintheinputimage.Second,themulti-scalenetworkiscapabletoselectaproperreceptive eldfordi erentup-scalestorestoretheHRimage.Onlysinglemodelistrainedformultipleup-scalefactorsbymulti-scaletraining.2Mutli-scaleSuper-ResolutionGivenalow-resolutionimage,super-resolutionaimsatrestoringitshigh-resolutionversion.Forthisill-posedrecoveryproblem,itisprobablyane ectivewaytoes-timateatargetpixelbytakingintoaccountmorecontextinformationintheneighborhood.In[6,7,14],authorsfoundthatlargerreceptive eldtendstoachievebetterperformanceduetoricherstructuralinformation.However,weSingleImageSuper-ResolutionUsingMulti-ScaleCNN3arguethattherestorationprocessisnotonlydependingonsingle-scaleregionswithlargereceptive eld.Di erentkindsofcomponentsinanimagemayberelevanttodi erentscalesofneighbourhood.In[26],multi-scaleneighborhoodhasbeenprovene ectiveforsuper-resolution,whichsimultaneousl

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功