九年级数学中考复习-抛物线与存在性问题11抛物线与存在性-1一、解答题(共30小题)1、已知:矩形ABCD(字母顺序如图)的边长AB=3,AD=2,将此矩形放在平面直角坐标系xOy中,使AB在x轴正半轴上,而矩形的其它两个顶点在第一象限,且直线y=x﹣1经过这两个顶点中的一个.(1)求出矩形的顶点A、B、C、D的坐标;(2)以AB为直径作⊙M,经过A、B两点的抛物线,y=ax2+bx+c的顶点是P点.①若点P位于⊙M外侧且在矩形ABCD内部,求a的取值范围;②过点C作⊙M的切线交AD于F点,当PF∥AB时,试判断抛物线与y轴的交点Q是位于直线y=x﹣1的上方?还是下方?还是正好落在此直线上?并说明理由.2、(2000•甘肃)已知开口向下的抛物线y=ax2+bx+c与x轴交于M,N两点(点N在点M的右侧),并且M和N两点的横坐标分别是方程x2﹣2x﹣3=0的两根,点K是抛物线与y轴的交点,∠MKN不小于90度.(1)求点M和N的坐标;(2)求系数a的取值范围;(3)当y取得最大值时,抛物线上是否存在点P,使得?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.3、(2000•内江)如图,在直角坐标系xoy中,以原点为圆心的⊙O的半径是,过A(0,4)作⊙O的切线交x轴于点B,T是切点,抛物线y=ax2+bx+c的顶点为C(3,﹣),且抛物线过A、B两点.(1)求此抛物线的解析式;(2)如果此抛物线的对称轴交x轴于D点,问在y轴的负半轴上是否存在点P,使△BCD∽△OPB?若存在,求出P点的坐标;若不存在,请说明理由.九年级数学中考复习-抛物线与存在性问题124、(2001•哈尔滨)已知:如图,抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标分别为﹣1和3,与y轴交点C的纵坐标为3,△ABC的外接圆的圆心为点M.(1)求这条抛物线的解析式;(2)求图象经过M、A两点的一次函数解析式;(3)在(1)中的抛物线上是否存在点P,使过P、M两点的直线与△ABC的两边AB、BC的交点E、F和点B所组成的△BEF和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.5、(2001•山东)已知,抛物线y=ax2+bx+c(a≠0)过点P(1,﹣2)、Q(﹣1,2),且与x轴交于A、B两点,(A在B左侧,与y轴交于C点,连接AC、BC.(1)求a与c的关系式;(2)若(O为坐标原点),求抛物线的解析式;(3)是否存在满足条件tan∠CAB•cot∠CBA=1的抛物线?若存在,请求出抛物线的解析式;若不存在,请说明理由.6、(2001•温州)己知:抛物线y=x2﹣(k+1)x+k(1)试求k为何值时,抛物线与x轴只有一个公共点;(2)如图,若抛物线与x轴交于A,B两点(点A在点B的左边),与y轴的负半轴交于点C,试问:是否存在实数k,使△AOC与△COB相似.若存在,求出相应的k的值;若不存在,请说明理由.7、(2001•无锡)已知直线y=﹣x+m(m>0)与x轴、y轴分别将于交于点C和点E,过E点的抛物线y=ax2+bx+c的顶点为D,(1)如果△CDE恰为等边三角形.求b的值;(2)设抛物线交y=ax2+bx+c与x轴的两个交点分别为A(x1,0)、B(x2,0)(x1<x2),问是九年级数学中考复习-抛物线与存在性问题13否存在这样的实数m,使∠AEC=90°?如果存在,求出此时m的值;如果不存在,请说明理由.8、(2002•鄂州)已知抛物线y=mx2﹣2mx+4m﹣与x轴的两个交点的坐标为A(x1,0),B(x2,0)(xl<x2),且x12+x22=34.(1)求m,x1,x2的值;(2)在抛物线上是否存在点C,使△ABC是一个顶角为120°的等腰三角形?若存在,请求出所有点C的坐标;若不存在,请说明理由.9、(2002•贵阳)如图,在直角坐标系xOy中,二次函数图象的顶点坐标为C(4,﹣),且在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)设抛物线与y轴的交点为D,求四边形DACB的面积;(3)在x轴上方的抛物线上,是否存在点P,使得∠PAC被x轴平分,如果存在,请求出P点的坐标;如果不存在,请说明理由.10、(2002•广西)已知抛物线y=﹣x2+2mx+4.(1)求抛物线的顶点坐标(用含m的式子表示);(2)设抛物线与x轴相交于A、B两点,且,求抛物线的函数解析式,并画出它的图象;(3)在(2)的抛物线上是否存在点P,使∠APB等于90°?如果不存在,请说明理由;如果存在,先找出点P的位置,然后再求出点P的坐标.11、(2002•内江)如图,一次函数y=﹣x+3的图象交x轴于点A,交y轴于点Q,抛物线y=ax2+bx+c(a≠0)的顶点为C,其图象过A、Q两点,并与x轴交于另一个点B(B点在A点左侧),△ABC三内角∠A、∠B、∠C的对边为a,b,c.若关于x的方程a(1﹣x2)+2bx+c(1+x2)=0有两个相等实数根,且a=b;(1)试判定,△ABC的形状;(2)当时求此抛物线的解析式;(3)抛物线上是否存在点P,使S△ABP=S四边形ACBQ?若存在,求出P点坐标;若不存在,请说明理由.九年级数学中考复习-抛物线与存在性问题1412、(2002•泸州)已知:抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0),b(x2,0)(x1<x2),顶点M的纵坐标是﹣4.若x1,x2是方程x2﹣2(m﹣1)+m2﹣7=0的两个实数根,且x12+x22=10.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)在抛物线上是否存在点P,使△PAB的面积等于四边形ACMB的面积的2倍?若存在,求出所有合条件的点P的坐标;若不存在,请说明理由.13、(2002•青海)如图,已知二次函数y=ax2+bx+c的图象经过原点O,并且与一次函数y=kx+4的图象相交于A(1,3),B(2,2)两点.(1)分别求出一次函数、二次函数的解析式;(2)若C为x轴上一点,问:在x轴上方的抛物线上是否存在点D,使S△COD=S△OCB?若存在,请求出所有满足条件的D点坐标;若不存在,请说明理由.14、(2002•山西)已知:抛物线y=ax2+bx与x铀的一个交点为B,顶点A在直线y=x上,O为坐标原点.(1)证明:△OAB为等边三角形;(2)若△OAB的内切圆半径为1,求出抛物线的解析式;(3)在抛物线上是否存在点P,使△POB是直角三角形,若存在,请求出点P的坐标;若不存在,请说明理由.15、(2002•武汉)已知抛物线交x轴于A(x1,0)、B(x2,0),交y轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.九年级数学中考复习-抛物线与存在性问题15(1)求抛物线的解析式;(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.16、(2002•无锡)已知直线y=kx﹣4(k>0)与x轴和y轴分别交于A、C两点;开口向上的抛物线y=ax2+bx+c过A、C两点,且与x轴交于另一点B.(1)如果A、B两点到原点O的距离AO、BO满足AO=3BO,点B到直线AC的距离等于,求这条直线和抛物线的解析式.(2)问是否存在这样的抛物线,使得tan∠ACB=2,且△ABC的外接圆截y轴所得的弦长等于5?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.17、(2002•乌鲁木齐)已知抛物线y=x2﹣x+2.(1)确定此抛物线的对称轴方程和顶点坐标;(2)如图,若直线l:y=kx(k>0)分别与抛物线交于两个不同的点A、B,与直线y=﹣x+4相交于点P,试证=2;(3)在(2)中,是否存在k值,使A、B两点的纵坐标之和等于4?如果存在,求出k值;如果不存在,请说明理由.18、(2003•北京)已知:抛物线y=ax2+4ax+t与x轴的一个交点为A(﹣1,0)(1)求抛物线与x轴的另一个交点B的坐标;(2)D是抛物线与y轴的交点,C是抛物线上的一点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;(3)E是第二象限内到x轴、y轴的距离的比为5:2的点,如果点E在(2)中的抛物线上,且它与点A在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.19、(2002•浙江)已知抛物线过A(﹣2,0)、B(1,0)、C(0,2)三点,(1)求这条抛物线的解析式;(2)在这条抛物线上是否存在点P,使∠AOP=45°?若存在,请求出点P的坐标;若不存在,请说明理由.20、(2002•浙江)以x为自变量的二次函数y=﹣x2+2x+m,它的图象与y轴交于点C(0,3),与x轴交于点A、B,点A在点B的左边,点O为坐标原点,(1)求这个二次函数的解析式及点A,点B的坐标,画出二次函数的图象;(2)在x轴上是否存在点Q,在位于x轴上方部分的抛物线上是否存在点P,使得以A,P,Q三点为顶点的三角形与△AOC相似(不包含全等)?若存在,请求出点P,点Q的坐标;若不存在,请说明理由.九年级数学中考复习-抛物线与存在性问题1621、(2002•漳州)已知一元二次方程﹣x2+bx+c=0的两个实数根是m,4,其中0<m<4.(1)求b、c的值(用含m的代数式表示);(2)设抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C.若点D的坐标为(0,﹣2),且AD•BD=10,求抛物线的解析式及点C的坐标;(3)在(2)中所得的抛物线上是否存在一点P,使得PC=PD?若存在,求出P点的坐标;若不存在,请说明理由.22、(2003•长沙)设抛物线C的解析式为:y=x2﹣2kx+(+k)k,k为实数.(1)求抛物线的顶点坐标和对称轴方程(用k表示);(2)任意给定k的三个不同实数值,请写出三个对应的顶点坐标;试说明当k变化时,抛物线C的顶点在一条定直线L上,求出直线L的解析式并画出图象;(3)在第一象限有任意两圆O1、O2相外切,且都与x轴和(2)中的直线L相切.设两圆在x轴上的切点分别为A、B(OA<OB),试问:是否为一定值?若是,请求出该定值;若不是,请说明理由;(4)已知一直线L1与抛物线C中任意一条都相截,且截得的线段长都为6,求这条直线的解析式.23、(2003•福州)已知:如图,二次函数y=2x2﹣2的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,直线x=m(m>1)与x轴交于点D.(1)求A、B、C三点的坐标;(2)在直线x=m(m>1)上有一点P(点P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求P点坐标(用含m的代数式表示);(3)在(2)成立的条件下,试问:抛物线y=2x2﹣2上是否存在一点Q,使得四边形ABPQ为平行四边形?如果存在这样的点Q,请求出m的值;如果不存在,请简要说明理由.九年级数学中考复习-抛物线与存在性问题1724、(2003•哈尔滨)已知:抛物线y=ax2+bx+c经过A(1,0)、B(5,0)两点,最高点的纵坐标为4,与y轴交于点C.(1)求该抛物线的解析式;(2)若△ABC的外接圆⊙O’交y轴不同于点c的点D’,⊙O’的弦DE平行于x轴,求直线CE的解析式;(3)在x轴上是否存在点F,使△OCF与△CDE相似?若存在,求出所有符合条件的点F的坐标,并判定直线CF与⊙O’的位置关系(要求写出判断根据);若不存在,请说明理由.25、(2003•汕头)已知抛物线y=﹣x2+(m+3)x﹣(m﹣1).(1)求抛物线的顶点坐标(用m表示);(2)设抛物线与x轴的两个交点为A(x1,0)、B(x2,0),与y轴交点为C,若∠ABC=∠BAC,求m的值;(3)在(2)的条件下,设Q为抛物线上的一点,它的横坐标为1,试问在抛物线上能否找到另一点P,使PC⊥QC?若点P存在,求点P的坐标;若点P不存在,请说出理由.(请在右方直角坐标系中作出大致图形)26、(2003•山西)如图