生理学酶

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Enzyme第3章酶酶的概念目前将生物催化剂分为两类:酶、核酶(脱氧核酶)酶是由活细胞产生的一类对其特异底物具有高效催化作用的蛋白质。酶学研究简史公元前两千多年,我国已有酿酒记载。一百余年前,Pasteur认为发酵是酵母细胞生命活动的结果。1878年,Kühne首次提出Enzyme一词。1897年,EduardBuchner用不含细胞的酵母提取液,实现了发酵。1926年,Sumner首次从刀豆中提纯出脲酶结晶(deoxyribozyme)。1982年,Cech首次发现RNA也具有酶的催化活性,提出核酶(ribozyme)的概念。1995年,JackW.Szostak研究室首先报道了具有DNA连接酶活性DNA片段,称为脱氧核酶(deoxyribozyme)。第一节酶的分子结构与功能TheMolecularStructureandFunctionofEnzyme酶的不同形式:单体酶(monomericenzyme):仅具有三级结构的酶。寡聚酶(oligomericenzyme):由多个相同或不同亚基以非共价键连接组成的酶。多酶体系(multienzymesystem):由几种不同功能的酶彼此聚合形成的多酶复合物。多功能酶(multifunctionalenzyme)或串联酶(tandemenzyme):一些多酶体系在进化过程中由于基因的融合,多种不同催化功能存在于一条多肽链中,这类酶称为多功能酶。一、酶的分子组成中常含有辅助因子蛋白质部分:酶蛋白(apoenzyme)辅助因子(cofactor)金属离子小分子有机化合物全酶(holoenzyme)结合酶(conjugatedenzyme)单纯酶(simpleenzyme)全酶分子中各部分在催化反应中的作用:酶蛋白决定反应的特异性辅助因子决定反应的种类与性质与酶蛋白结合紧密的辅助因子称为辅基(prostheticgroup)。辅基和酶蛋白结合紧密,不能通过透析或超滤等方法将其除去,在反应中不能离开酶蛋白,如FAD、FMN、生物素等。金属酶(metalloenzyme)金属离子与酶结合紧密,提取过程中不易丢失。金属激活酶(metal-activatedenzyme)金属离子为酶的活性所必需,但与酶的结合不甚紧密。金属离子是最多见的辅助因子金属离子的作用:参与催化反应,传递电子;在酶与底物间起桥梁作用;稳定酶的构象;中和阴离子,降低反应中的静电斥力等。小分子有机化合物是一些化学稳定的小分子物质,称为辅酶(coenzyme)。其主要作用是参与酶的催化过程,在反应中传递电子、质子或一些基团。辅酶的种类不多,且分子结构中常含有维生素或维生素类物质。转移的基团小分子有机化合物(辅酶或辅基)名称所含的维生素氢原子(质子)NAD+(尼克酰胺腺嘌呤二核苷酸,辅酶I尼克酰胺(维生素PP)之一NADP+(尼克酰胺腺嘌呤二核苷酸磷酸,辅酶II尼克酰胺(维生素PP)之一FMN(黄素单核苷酸)维生素B2(核黄素)FAD(黄素腺嘌呤二核苷酸)维生素B2(核黄素)醛基TPP(焦磷酸硫胺素)维生素B1(硫胺素)酰基辅酶A(CoA)泛酸硫辛酸硫辛酸烷基钴胺素辅酶类维生素B12二氧化碳生物素生物素氨基磷酸吡哆醛吡哆醛(维生素B6之一)甲基、甲烯基、甲炔基、甲酰基等一碳单位四氢叶酸叶酸某些辅酶(辅基)在催化中的作用指必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。二、酶的活性中心(activecenter)酶的活性中心是酶分子中执行其催化功能的部位酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。必需基团(essentialgroup)活性中心内的必需基团结合基团(bindinggroup)与底物相结合催化基团(catalyticgroup)催化底物转变成产物位于活性中心以外,维持酶活性中心应有的空间构象和(或)作为调节剂的结合部位所必需。活性中心外的必需基团底物活性中心以外的必需基团结合基团催化基团活性中心溶菌酶的活性中心溶菌酶的活性中心是一裂隙,可以容纳肽多糖的6个单糖基(A,B,C,D,E,F),并与之形成氢键和vanderwaals力。催化基团是35位Glu,52位Asp;101位Asp和108位Trp是结合基团。三、同工酶同工酶(isoenzyme)是指催化相同的化学反应,而酶蛋白的分子结构理化性质乃至免疫学性质不同的一组酶。定义根据国际生化学会的建议,同工酶是由不同基因编码的多肽链,或由同一基因转录生成的不同mRNA所翻译的不同多肽链组成的蛋白质。HHHHHHHMHHMMHMMMMMMMLDH1(H4)LDH2(H3M)LDH3(H2M2)LDH4(HM3)LDH5(M4)乳酸脱氢酶的同工酶举例1举例2BBBMMMCK1(BB)CK2(MB)CK3(MM)脑心肌骨骼肌肌酸激酶(creatinekinase,CK)同工酶第二节酶促反应特点与机制TheMechanismofEnzymeAction在反应前后没有质和量的变化;只能催化热力学允许的化学反应;只能加速可逆反应的进程,而不改变反应的平衡点。酶与一般催化剂的共同点:(一)酶促反应具有极高的效率一、酶促反应的特点酶的催化效率通常比非催化反应高108~1020倍,比一般催化剂高107~1013倍。酶的催化不需要较高的反应温度。酶的转换数(turnovernumber)在酶被底物饱和的条件下,每个酶分子每秒钟将底物转化为产物的分子数。酶的特异性分为以下3种类型:绝对特异性(absolutespecificity):只能作用于特定结构的底物,进行一种专一的反应,生成一种特定结构的产物。相对特异性(relativespecificity):作用于一类化合物或一种化学键。立体结构特异性(stereospecificity):作用于立体异构体中的一种。(三)酶促反应的可调节性酶促反应受多种因素的调控,以适应机体对不断变化的内外环境和生命活动的需要。二、酶促反应机制(一)酶比一般催化剂更有效地降低反应活化能酶和一般催化剂一样,加速反应的作用都是通过降低反应的活化能(activationenergy)实现的。活化能:底物分子从初态转变到活化态所需的能量。反应总能量改变非催化反应活化能酶促反应活化能一般催化剂催化反应的活化能能量反应过程底物产物酶促反应活化能的改变(二)酶-底物复合物的形成有利于底物转变成过渡态酶底物复合物E+SE+PES(过渡态)1.诱导契合作用使酶与底物密切结合酶与底物相互接近时,其结构相互诱导、相互变形和相互适应,进而相互结合。这一过程称为酶-底物结合的诱导契合(induced-fit)。羧肽酶的诱导契合模式底物2.邻近效应与定向排列将分子间的反应变成类似于分子内的反应,从而提高反应速率。酶的活性中心多是酶分子内部的疏水“口袋”,酶反应在此疏水环境中进行,使底物分子脱溶剂化(desolvation),排除周围大量水分子对酶和底物分子中功能基团的干扰性吸引和排斥,防止水化膜的形成,利于底物与酶分子的密切接触和结合。这种现象称为表面效应(surfaceeffect)。3.表面效应4.酶的催化机制呈多元催化作用1.一般酸-碱催化作用(generalacid-basecatalysis)2.共价催化作用(covalentcatalysis)3.亲核催化作用(nucleophiliccatalysis)第三节酶促反应动力学KineticsofEnzyme-CatalyzedReaction酶促反应动力学:研究各种因素对酶促反应速率的影响,并加以定量的阐述。影响因素包括:酶浓度、底物浓度、pH、温度、抑制剂、激活剂等。一、底物浓度对反应速率影响的作图呈矩形双曲线在其他因素不变的情况下,底物浓度对反应速率的影响呈矩形双曲线关系。[S]V①单底物、单产物反应;②酶促反应速率一般在规定的反应条件下,用单位时间内底物的消耗量和产物的生成量来表示;③反应速率取其初速率,即底物的消耗量很小(一般在5﹪以内)时的反应速率④底物浓度远远大于酶浓度。研究前提:当底物浓度较低时:反应速率与底物浓度成正比;反应为一级反应。[S]VVmax随着底物浓度的增高:反应速率不再成正比例加速;反应为混合级反应。[S]VVmax当底物浓度高达一定程度:反应速率不再增加,达最大速率;反应为零级反应[S]VVmax中间产物解释酶促反应中底物浓度和反应速率关系的最合理学说是中间产物学说:E+Sk1k2k3ESE+P(一)米-曼氏方程式揭示单底物反应的动力学特性1913年Michaelis和Menten提出反应速率与底物浓度关系的数学方程式,即米-曼氏方程式,简称米氏方程式(Michaelisequation)。[S]:底物浓度V:不同[S]时的反应速率Vmax:最大反应速率(maximumvelocity)Km:米氏常数(Michaelisconstant)VVmax[S]Km+[S]=──(二)Km与Vm是有意义的酶促反应动力学参数Km值的推导Km与Vmax的意义当反应速率为最大反应速率一半时:Km值的推导Km=[S]Km值等于酶促反应速率为最大反应速率一半时的底物浓度,单位是mol/L。2=Km+[S]VmaxVmax[S]VmaxV[S]KmVmax/2Km与Vmax的意义定义:Km等于酶促反应速率为最大反应速率一半时的底物浓度。意义:Km是酶的特征性常数之一,只与酶的结构、底物和反应环境(如,温度、pH、离子强度)有关,与酶的浓度无关。Km可近似表示酶对底物的亲和力;同一酶对于不同底物有不同的Km值。Km值Vmax意义:Vmax=k3[E]定义:Vm是酶完全被底物饱和时的反应速率,与酶浓度成正比。如果酶的总浓度已知,可从Vmax计算酶的转换数(turnovernumber),即动力学常数k3。定义:当酶被底物充分饱和时,单位时间内每个酶分子催化底物转变为产物的分子数。意义:可用来比较每单位酶的催化能力。酶的转换数(turnovernumber)1.双倒数作图法(doublereciprocalplot),又称为林-贝氏(Lineweaver-Burk)作图法Vmax[S]Km+[S]V=(林-贝氏方程)+1/V=KmVmax1/Vmax1/[S]两边同取倒数(三)Km值与Vmax值可以通过作图法求取-1/Km1/Vmax1/[S]1/V2.Hanes作图法在林-贝氏方程基础上,两边同乘[S][S]/V=Km/Vmax+[S]/Vmax[S][S]/V-KmKm/Vm1/Vmax二、底物足够时酶浓度对反应速率的影响呈直线关系在酶促反应系统中,当底物浓度大大超过酶的浓度,酶被底物饱和时,反应速率达最大速率。此时,反应速率和酶浓度变化呈正比关系。当[S]>>[E],酶可被底物饱和的情况下,反应速率与酶浓度成正比。关系式为:V=k3[E]0V[E]当[S][E]时,Vmax=k3[E]酶浓度对反应速率的影响三、温度对反应速率的影响具有双重性温度对酶促反应速率具有双重影响。酶促反应速率最快时反应体系的温度称为酶促反应的最适温度(optimumtemperature)。温度对淀粉酶活性的影响酶的最适温度不是酶的特征性常数,它与反应进行的时间有关。酶的活性虽然随温度的下降而降低,但低温一般不使酶破坏。温度回升后,酶又恢复其活性。四、pH通过改变酶和底物分子解离状态影响反应速率酶催化活性最高时反应体系的pH称为酶促反应的最适pH(optimumpH)。pH对某些酶活性的影响五、抑制剂对酶促反应速率影响酶的抑制剂(inhibitor)酶的抑制区别于酶的变性:抑制剂对酶有一定选择性引起变性的因素对酶没有选择性凡能使酶的催化活性下降而不引起酶蛋白变性的物质称为酶的抑制剂。抑制作用的类型不可逆性抑制(irreversibleinhibition)可逆性抑

1 / 108
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功