Lag Length Selection in Vector Autoregressive Mode

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

LagLengthSelectioninVectorAutoregressiveModels:SymmetricandAsymmetricLagsOmerOzcicekBatonRouge,LA70803Phone:504-388-5211Fax:504-388-3807email:eoozci@unix1.sncc.lsu.eduW.DouglasMcMillinDepartmentofEconomicsLouisianaStateUniversityBatonRouge,LA70603-6306Phone:504-388-3798Fax:504-388-3807email:eodoug@unix1.sncc.lsu.edu2I.IntroductionVectorautoregressive(VAR)modelsarewidelyusedinforecastingandinanalysisoftheeffectsofstructuralshocks.AcriticalelementinthespecificationofVARmodelsisthedeterminationofthelaglengthoftheVAR.TheimportanceoflaglengthdeterminationisdemonstratedbyBraunandMittnik(1993)whoshowthatestimatesofaVARwhoselaglengthdiffersfromthetruelaglengthareinconsistentasaretheimpulseresponsefunctionsandvariancedecompositionsderivedfromtheestimatedVAR.Lütkepohl(1993)indicatesthatoverfitting(selectingahigherorderlaglengththanthetruelaglength)causesanincreaseinthemean-square-forecasterrorsoftheVARandthatunderfittingthelaglengthoftengeneratesautocorrelatederrors.HaferandSheehan(1989)findthattheaccuracyofforecastsfromVARmodelsvariessubstantiallyforalternativelaglengths.MostVARmodelsareestimatedusingsymmetriclags,i.e.thesamelaglengthisusedforallvariablesinallequationsofthemodel.ThislaglengthisfrequentlyselectedusinganexplicitstatisticalcriterionsuchastheAICorSIC.SymmetriclagVARmodelsareeasilyestimated;sincethespecificationofallequationsofthemodelisthesame,estimationbyordinaryleastsquaresyieldsefficientparameterestimates.However,thereisnocompellingreasonfromeconomictheorythatlaglengthsshouldbethesameforallvariablesinallequations.Infact,Hsaio(1981)suggestedestimatingVARsinwhichthelaglengthoneachvariableineachequationcoulddiffer.TheissueofwhetherVARsshouldbeestimatedusingsymmetricorasymmetriclagshasrecentlybeenresurrectedbyKeating(1993;1995).HesuggestedestimatingasymmetriclagVARmodelsinwhichthelaglengthpotentiallydiffersacrossthevariablesinthemodelbutisthesameforaparticularvariableineachequationofthemodel.HedemonstratedthatthispatternofasymmetrycanbederivedfromastructuralrepresentationoftheVARmodelthathasasymmetriclags.IntheKeating-typeasymmetriclagmodel,thespecificationofeachequationisthesame,sotheVARcanbeestimatedusingordinaryleastsquares.Withinthecontextofasmallstructural3VARmodel,Keating(1995)foundthatestimatesoflong-runstructuralparameterstypicallyhadsmallerstandarderrorsforhisasymmetriclagVARthanforasymmetriclagVARandthattheconfidenceintervalsforimpulseresponsefunctionsandvariancedecompositionsforanasymmetriclagVARweresmallerthanforasymmetriclagVAR.GiventhedemonstratedimportanceoflaglengthselectionforVARmodels,theaimofthispaperistoexaminetheperformanceofalternativelagselectioncriteriaforVARmodelsusingMonteCarlosimulations.AlthoughtheperformanceofalternativestatisticalcriterionforlaglengthselectionofsymmetriclagVARshasbeenstudiedby,amongothers,Lütkepohl(1993),theperformanceofstatisticallagselectioncriteriainselectinglaglengthsforasymmetriclagVARmodelshasnotbeenstudied.ThelagselectioncriteriaconsideredincludeAkaike’sinformationcriterion(AIC),Schwarz’sinformationcriterion(SIC),Phillips’posteriorinformationcriterion(PIC),andKeating’s(1995)’sapplicationoftheAICandSICcriterion(KAICandKSIC).1Fourdifferentbivariatelagmodelsareexamined;twoaresymmetriclagmodelsandtwoareasymmetriclagmodels.InthespiritofKennedyandSimons(1991),theparametersofthelagmodelsareestimatedusingtendifferentbivariatemodelsconstructedfromactualeconomicdata.Theremainderofthestudyisnowoutlined.SectionIIofthepaperdescribestheempiricalmethodologywhiletheempiricalresultsarereportedinSectionIII.SectionIVprovidesasummaryandconclusion.II.MethodologyMonteCarlosimulationsof1000drawsareusedtoevaluatetheperformanceofthealternativelagselectioncriterioninbivariateVARmodels.TheVARsaresimulatedusingprespecifiedmodelparametersandlaglengthandarandomnumbergenerator.Thealternativelagselectioncriteriaareevaluatedbycomputingthefrequencydistributionsoflaglengthsselectedbyeachlagselectioncriterion.Fourdifferentbivariatelagmodelsareconsidered.Theout-of-sampleforecastingperformanceofthemodelsselectedbyeachlagselectioncriterionarealso4examined,asistheabilityofeachlagselectioncriteriontogenerateimpulsereponsefunctionsthatmimicthetrueimpulseresponsefunction.ThelagselectioncriterionaretheAIC,SIC,PIC,andKeating’s(1995)’sprocedureusing,alternatively,theAICandSICcriteriontoselectthelagorder.TheAICandSICarewell-knownandthedefinitionofeachispresentedwithoutdiscussion:AIC=ln~∑+2T(numberoffreelyestimatedparameters),andSIC=ln~∑+lnTT(numberoffreelyestimatedparameters)where~∑=estimatedcovariancematrixandT=numberofobservations.Phillips(1994)hasrecentlyproposedanotherlagspecificationcriterioncalledtheposteriorinformationcriterion(PIC).PhillipsderivedthePICfromBayesiananalysisinwhichflatpriorswereimposedontheparameterstofindtheposteriordistributions.ThePICisdefinedas:PIC=ln~~∑+∑⊗′-11TXX,where⊗isthekroneckerproductoperatorandX=matrixofexplanatoryvariables.Keating’sinsightaboutasymmetriclagscanbedevelopedinthefollowingway.Let(1)Φ(L)yCtt=+εbeastructuralmodelwhereyt=Nx1vectorofendogenousvariables,

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功