平面直角坐标系一、本节学习指导本节把重点放在几个象限内点的表示方法上,把四个象限里点的的符号牢牢的记在脑子里。然后做一些相关练习题就可以掌握,这一节属于比较简单的章节。二、知识要点1、坐标数轴:规定了原点、正方向、单位长度的直线叫数轴。注意:1、数轴上的点可以用一个数来表示,这个数叫这个点在数轴上的坐标。2、数轴上的点与实数(包括有理数与无理数)一一对应,数轴上的每一个点都有唯一的一个实数与之对应。平面直角坐标系:由互相垂直、且原点重合的两条数轴组成。横向的是x轴,纵向的是y轴。说明:平面直角坐标系上的任一点,都可用一对有序实数对来表示,这对有序实数对就叫这点的坐标,如上图点A的坐标用(2,2)这有序实数来表示,(即是用有顺序的两个数来表示,注:x在前,y在后,不能更改),坐标平面内的点与有序实数对是一一对应的,每一个点,都有唯一的一对有序实数对与之对应。【重点】2、象限及坐标平面内点的特点四个象限:如图,平面直角坐标系把坐标平面分成四个象限,从右上部分开始,按逆时针方向分别叫第一象限、第二象限、第三象限和第四象限。【重点】注:1、坐标轴(x轴、y轴)上的点不属于任何一个象限。如上图,点B(4,0)和点C(0,-2)不在任何象限。坐标平面内点的位置特点:①、坐标原点的坐标为(0,0);②、第一象限内的点,x、y同号,均为正;③、第二象限内的点,x、y异号,x为负,y为正;④、第三象限内的点,x、y同号,均为负;⑤、第四象限内的点,x、y异号,x为正,y为负;⑥、横轴(x轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0(表示一条直线)【重点】⑦、纵轴(y轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0(表示一条直线)【重点】例:若P(x,y),已知xy0,则P点在第______象限;已知xy0,则P点在第_____象限。分析:xy0说明x,y同号,所以是在第一或第三象限,xy0说明x,y异号,所以是在第二或第四象限点到坐标轴的距离:坐标平面内的点的横坐标的绝对值表示这点到纵轴(y轴)的距离,而纵坐标的绝对值表示这点到横轴(x轴)的距离。【重点】例:点A(-3,7)表示到x轴的距离为7,到纵轴的距离为3;点B(-9,0)表示到横轴的距离为0,到纵轴的距离为9.注:已知点的坐标求距离,只有一个结果,距离必须是正的。但已知距离求坐标,则因为点的坐标有正有负,可能有多个解的情况,应注意不要丢解。例1:点P(x,y)到x轴的距离是3,到y轴的距离是7,求点P的坐标为(±7,±3),有四个有序数对(7,3),(7,-3),(-7,3),(-7,-3)。4、坐标平面内对称点坐标的特点①、一个点A(a,b)关于x轴对称的点的坐标为A‘(a,-b),特点为:x不变,y相反;例:A(-3,5)关于x轴对称的点的坐标为A’(____,____)②、一个点A(a,b)关于y轴对称的点的坐标为A‘(-a,b),特点为:y不变,x相反;例:A(-3,5)关于y轴对称的点的坐标为A’(____,____)③、一个点A(a,b)关于原点对称的点的坐标为A‘(-a,-b),特点为:x、y均相反。例:A(-3,5)关于原点对称的点的坐标为A’(____,____)5、平行于坐标轴的直线的表示①、平行于横轴(x轴)的直线上的任意一点,其横坐标不同,纵坐标均相等,所以,可表示为:y=a(a为纵坐标)的形式,a的绝对值表示这条直线到x轴的距离,直线上两点之间的距离等于这两点横坐标之差的绝对值;②、平行于纵轴(y轴)的直线上的任意一点,其纵坐标不同,横坐标均相等,所以,可表示为:x=b(b为横坐标)的形式,b的绝对值表示这条直线到y轴的距离,直线上两点之间的距离等于这两点纵坐标之差的绝对值。例如:直线y=-5上与点A(-3,-5)距离为8的点P坐标为:________________________;直线x=6上与点B(6,7)距离为9的点K坐标为:_________________________.6、象限角平分线的特点①、第一、三象限的角平分线可表示为y=x的形式,即角平分线上的点的纵坐标与横坐标相等(同号);例:A(3,____)和B(-5,____)均在第一、三象限的角平分线上。②、第二、四象限的角平分线可表示为y=-x的形式,即角平分线的点的纵坐标与横坐标互为相反数(异号)。例A(-3,____)和B(5,____)均在第二、四象限的角平分线上。三、经验之谈:这一节是比较重要的小节,一定要掌握好坐标中点的表示方法,其次不要被到x,y轴的距离搅浑了头,到y轴的距离表示的是横坐标,到x轴的距离表示的纵坐标。遇到这一小节题目的时候一定要画图出来观察,看上去很简单,但是千万不能大意。本文由索罗学院整理