对数函数习题课一、复习对数函数的图像和性质图象性质a>10<a<1定义域:(0,+∞)值域:R过点(1,0),即当x=1时,y=0在(0,+∞)上是增函数在(0,+∞)上是减函数yx0yx0(1,0)(1,0)y=logax(a>0,且a≠1)二、应用举例:例1比较下列各数的大小nmnm_____,loglog)(log______log)(.log______.log)(lg_______lg)(则若0224788734506502861xy3logxy2logxy21logxy31logyxo练习:从小到大的顺序为_____________(用小于号连接)43344334log,log,log4334log43log34log例2求下列函数的定义域)3lg(56.2log1.122xxxyyx021xlog解:2012xxlog)lg()(32562xxxy03030256)lg(xxxx4316xxx13x练习:求函数的定义域121log4.0xyx400.x答:例3求下列函数的值域)(log)(82121xxy32222xxylog)(6223xxylog)(32222xxylog)(2221322)(xtxxt解:设12222log)(logytty6223xxylog)(tyxxxxt232062log,或设Ry练习:求函数的值域325.02logxxy作业:金版名卷十九思考题:已知函数(1)若函数的定义域为R,求实数k的取值范围;(2)若函数的值域为R,求实数R的范围。)34(2logkxkxay已知函数(1)若函数的定义域为R,求实数k的取值范围;)34(2logkxkxay03424034201kkkxkxk)(,)(恒成立。当解:4300324kkk显然成立。当,0k430k(2)若函数的值域为R,求实数R的范围。)34(2logkxkxayoxy(1)oxy(2)yox(3)430032403424002kkkkkkRyk或时;由图像知:当解:,)(,)(不成立。时;当30ayklog43k0k例4求函数的单调区间)123(32logxxytyxxt31223log解:设的单调区间。的单调增区间,即为增大增大时,当ytyt),减区间为();,的单调增区间为3131[t1310xxt或又,),单调减区间为(),函数的单调增区间为(311练习:下列函数在区间(0,2)上是增函数的是()xxyCyA13)1(21log.log.)54(311222log.log.xxxyDyBD例5(对数方程与不等式的解法)解下列不等式:0log2x01)(log6))(log4(33xx222)8(2))(log3(1loglog)2(23)1(2xxxx131xlog;2333:231loglog)(:xx两边取对数得解23logx15022401xx.log(;.)()练习:解不等式313131131logloglogxx310x128222xxlog)(log)(xxxx2282212822log)(loglog)(log02282xxx4x1122221)(log)(logxx练习:解不等式2221x答:01)(log6))(log4(33xx013163xxloglog解:0632303xxxlog)(log,log当23302333xxxlog))(log(log2333x9103xxlog0632303xxxlog)(log,log当233302333xxxxlog,log))(log(log或9271xx或,271010xx又01262xxloglog练习:解不等式2710x,或原不等式的解为:91x范围。的求满足求的值域。求:已知函数例xxfxfxfxxxf01312112126)()();()()()()(121212121xxyxxxfy)()()(解:112121yyxyxy)(01102yyx11yy,或112112yyyyyxloglog121212122xxyxxxfy)()()(解:112xxylog所求反函数为:),(11xx或)(30112xxylog012111xxx1x练习:1已知(1)求f(x)的定义域(2)求使f(x)0的x的取值范围xxxf11ln)(11211321211113)(log)()(logxxyxxy)(求下列函数的定义域作业:228212xxylog和值域求下列函数的单调区间3122212313xx)21()(解下列不等式:)()(log)(log)(log)(xxx3414134314644xxloglog)(范围。的求满足求的值域。求已知函数xxfxfxfxexexf013121114)()();()()()()(